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Abstract

Containers have tremendously simplified the job of Information Technology (IT) specialists. They offer
a complete system abstraction, from hardware to networking. While containers offer powerful features,
their thin isolation layer with the host renders misconfigurations dangerous, as they may leave the
system or other containers vulnerable. As container use is on the up, so are attacks to break out of
them. A category that is on the rise is automated attacks, which may allow an attacker to take over
a system in a matter of seconds. We present a tool written in Rust to automate the exploration of
containers from its environment to breakout attacks, showing what an attacker could automatically
achieve, as well as mitigation advices to reduce the attack surface.
Our tool is capable of compromising very popular containers, especially with third-party provided
default configurations, and shows that breakouts could be achieved in seconds. We acknowledge that
big organizations have assessed the risk of container breakouts and acted upon it, but notice no signs
suggesting smaller organizations have followed through. We urge organizations to implement and
enforce processes throughout the lifecycle of containers to reduce breakout risks, by implementing
security measures at the very start of the container design.
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1 Introduction

Computing is nowadays used everywhere, from freighting platforms to banking, from Cloud Service
Providers (CSPs) to schools, and from prisons to industrial processes. Each of those entities has
complex connections between the many departments they have, either in real life or in their computer
infrastructure. Monolithic structures, such as a single centralized computing entity running the business
logic as a whole, are no longer considered efficient because of their underlying complexity and limits
[1], and it is well-known that separating services in separate “bricks” limits complexity and that it may
contribute to eliminating any Single Point Of Failure (SPOF)[2].

A brick can be defined as a single business logic unit. For instance, a web shop could have a brick that
consists of running a single website, another responsible for handling outgoing mail, and another
for running the database. Separating and isolating bricks from each other allows systems not only
to be more scalable, but also to be maintained more easily, as each one is isolated from the other.
Furthermore, this also reduces the risk of side effects as each brick has its own environment, e.g. a
brick responsible of sending emails that has suffered a power loss will not necessarily stop the brick
responsible for handling web traffic from working.
Moreover, bricks can be dispatched on more than one computing unit for redundancy or load-balancing
purposes. In contrast, systems described as monolithic are usually considered inefficient and unable to
meet the needs in scalability [1]. For example, systems designed as bricks could be run twice or more,
allowing the workload to either be distributed or to allow the workload to be highly available. This is
more difficult with monolithic systems as services were not initially meant to be separated, and this
may introduce unexpected side-effects in the business logic.

This isolation process is considered by security experts as good practice, because it ensures attacks
do not compromise the whole infrastructure at once as each brick is “sandboxed”, and therefore is
fully isolated from the rest of the resources [3]. Each brick may have its own attack surface [4], but the
process of separating the business logic into bricks also allows the introduction of security mechanisms,
which can ultimately reduce the overall attack surface. A previous example suggested having a brick
responsible for incoming web traffic. This brick could be the only one exposed to outside traffic, and
all other bricks could be only connected to the web server service. By doing so, other sensitive bricks
would be protected from illegitimate traffic as long as the web server brick is not compromised.

Two main technologies are capable of creating such bricks: Virtual Machines and containers. With
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the rise of CSPs, containers have become a technology that is widely used. While this has created
jobs and allowed many companies to get to market quicker, it also introduced yet another layer of
abstraction between the system and the administrator. Several publications show that there are new
risks with containers because of this abstraction [5] [6] [7]. Furthermore, industry publications suggest
that security issues within container technologies are amongst the ten key issues that IT need to solve
[8].

A popular attack with containers is breakout attacks, allowing a successful attacker to access the
container host. This problem gets even worse in multitenant applications such as CSPs. As containers
are light, so is their isolation from the host, as they are in most cases using the host Kernel. In some
cases, a breakout can extend to more than one company, particularly in the case of CSPs [6]. In such
cases, it’s difficult to ensure optimum security, since it’s possible that a company on the same server
could also be compromised, enabling an attacker to laterally attack the others.
Furthermore, organizations often run hundreds of containers at the same time [9], with each its own
attack surface. As the attack surface is scattered with each container, the difficulty of managing those
containers and their security is augmented. Moreover, tools to ensure proper security terms are not
included directly within the tools running the containers, which then requires additional work to
implement security checks.
Moreover, attacks are now mostly done automatically, with scanners finding vulnerable targets and
specialized programs attacking them. Attacks that used to take hours can now be summed up in a
matter of seconds.

The most optimal way to avoid breakouts is to follow existing guidelines, especially from known and
recognized organizations. Large organizations have been known to deploy significant blockades to
avoid breakouts, but there is little evidence this practice was passed down to smaller companies.

This work analyzes container security, focusing on automation to find vulnerabilities in containers and
trying to exploit them. We intend to explore the following questions :

• Can containers be scanned to determine which attack is feasible?
• What are the risks with the current use of containers?
• What are the challenges in mitigating attacks with containers?
• What can be done to avoid breakouts on containers?

1.1 Structure of the thesis

This report consists of seven chapters. The first chapter is this introduction to our work, which outlines
the basics of containers and their safety.

The second chapter is the state of the art, which studies recent publications and existing technologies,
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as well as their use-case. We will first focus on VMs in subchapter 2.2. We then show possible attacks
on VMs in subchapter 2.3. The same is then done for containers in subchapter 2.4, and possible attacks
on subchapter 2.5. We conclude this chapter with subchapter 2.6, where existing tools to either harden
or break containers are compared.

As this work focuses on container security, VMs will not be the main focus but will rather be mentioned
throughout this work. Before going any further, a deep understanding of how container engines work
is required, which will be the focus of chapter 3. We will quickly review Linux processes in subchapter
3.1. Then, we will shift our attention to the inner workings of containers, more specifically their kernel
modules, in subchapter 3.2. We will then analyze the industry use of containers in subchapter 3.3. We
will conclude chapter 3 with subchapter 3.4, where we will compare existing orchestration container
software.

We will draw a proposal for a container breakout tool in chapter 4. We will first establish a roadmap for
building such a tool in subchapter 4.1. Then, prerequisites will be discussed in subchapter 4.2. We will
focus on information gathering in subchapter 4.3, that is what information our tool can gather, from
CPU information to potential weaknesses in the container. We will then analyze in subchapter 4.4 the
pros and cons of such a tool from an applied perspective: what our tool can do and what it cannot.
Only then can we discuss the attack process in subchapter 4.5, the attack scoring system, as well as
attacks that can be implemented in our tool. Finally, we will conclude chapter 4 with a critical analysis
of what was presented.

Then, we will discuss on chapter 5 audits of our tool on sample infrastructures. We will first present
different infrastructures that can be described as “typical” in container infrastructure in subchapter 5.1,
then we will describe the testing protocol that was used for our measurements in subchapter 5.2. We
will present the results in subchapter 5.3 along the security score that was presented in subchapter 4.5.
Subchapter 5.4 will analyze the obtained results. We will generalize obtained results on infrastructures
seen in the wild and analyze the potential consequences linked to the results of subchapter 5.4 in
subchapter 5.5. We will conclude chapter 5 with a critical analysis of what was presented.

As our tool is dedicated for blue teams in order to fix potential weaknesses and that it is our strong
belief that no tool should be dedicated for the sole purposes of breaking infrastructures, we will focus
on mitigation techniques to lessen the previously found vulnerabilities in chapter 6. We will go over
the challenges and goals of mitigations in subchapter 6.1. Then, we will go in subchapter 6.2 over
the existing mitigation techniques or standard published by various organizations. We will propose
automatic mitigations in subchapter 6.3, which will take the form of suggestions for the administrator
to apply for problems that can easily be mitigated. We will then shift our attention in subchapter 6.4
on common mitigations techniques, potential solutions to apply in order to fix problems not yet fixed
by subchapter 6.3. Subchapter 6.5 will address problems that do not fit into subchapters 6.3 and 6.4,
by proposing a list of early mitigation techniques. We will conclude chapter 6 with a reflection on

Théo Pirkl 13



Tesseract : a proposal for a container breakout tool January 2024

containers.

We offer in our last chapter, chapter 7, a conclusion and we recommend possible future works that can
be done to enhance this work.
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2 State of the art

2.1 Introduction

Most actors dependent on servers would benefit from splitting their business logic into smaller bricks.
This allows for the separation of each service dependency, but it also allows for proper resource
scheduling, as well as allowing the reducing of latency in cases of applications used worldwide. Splitting
the business into bricks requires either one of two technologies.

The first technology is called virtualization. It is a technology that allows to virtualize all resources linked
to a machine such as its network, its hardware, or its Operating System (OS) into a Virtual Machine (VM).
This technology allows for the proper separation of each resource into its own well-defined virtual
space, but it also introduces complexity, such as the maintenance of the newly created VM. The first
subchapter 2.1 will introduce virtualization as well as virtualization techniques, then subchapter 2.2
will focus on potential attack techniques. Considerations when creating a VM will then be introduced
in subchapter 2.3.

The second technology is called containerization, which allows the isolation of a group of processes
on the host. From the inside, this group looks exactly like a VM, but with key differences that will be
presented in the subchapter 2.4 on containers, with a focus on differentiating VMs from containers and
the components of a container engine. Attacks on containers will then be presented in subchapter 2.5.
Finally, subchapter 2.6 will assess the different technologies and attacks, as well as existing security
tools to audit such technologies, either to breakout from the isolation layer or to mitigate potential
weaknesses.

2.2 Virtualization

In Computer Science, virtualization is a technique that allows to run a resource on a computer, as if it
existed physically. Entire networks, Central Processing Units (CPUs), hard drives and many more can
be virtualized.

Our work focuses on platform virtualization, which is the concurrent execution of multiple OSs on
the same host [10]. The VM, or guest, is isolated from the rest of the resources and other VMs. This
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means that a single machine could run many VMs as long as the underlying hardware has the adequate,
available hardware to support it.

Virtualization may seem new, but it is in fact far from the truth. This technology, although different
at first, was first seen and implemented in 1960 [11]. As personal computers were nonexistent, the
notion of user and allocated resources were done on a single computer (a mainframe), by using Control
Program (CP), an OS that allowed running primitive VMs. This allowed multiple users to have their own
allocated space on a single machine [12]. Nowadays, virtualization is quite powerful as it can virtualize
entire CPUs, RAM, and even high-end gaming setups with gaming Graphics Processing Units (GPUs)
[13]. It is considered that at least one form of virtualization exists on most devices, from mobile phones
to gaming devices.

The different components of a virtualized infrastructure are shown on figure 2.1. The hypervisor (or
Virtual Machine Manager (VMM)) controls the different VMs by controlling the amount of dedicated
resources, their state, and so on. Each VM has its own dedicated (although virtual) hardware, its own
OS, and finally installed apps. Note that the hypervisor may run directly on hardware, called type 1
virtualization, or on the host’s OS, called type 2 virtualization. Type 1 virtualization usually refers to
a minimalistic OS running directly on hardware. In both types, the host OS always exists as a host
OS is always required. In type 2 VMMs, the host OS is a common one, such as Linux, Apple Mac OS X
or Microsoft Windows, whereas type 1 usually refers to a minimalistic OS made especially with VMs
hosting in mind.

Figure 2.1: Architecture of a host running VMs on a Type 2 VMM [14]

There are three types of platform virtualization.
The first one is full virtualization, which will also virtualize the hardware of the VM. This type of virtual-
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ization means that the underlying hardware is virtualized (including its Basic Input/Output System
(BIOS)), which is in many cases slower because the VM also has to handle hardware initialization (from
Power-On Self-Test (POST), to setting Random Access Memory (RAM), and so on). Full virtualization is
considered to be much more portable, as everything is virtualized. Therefore, very few compatibility
issues may occur. The guest OS is not aware that it is running on a VM, as nothing apart from reduced
performance may point to this conclusion [15]. The most common type of full virtualization nowadays
is done by the CPU, for reasons explained below.

The second one is called paravirtualization. It does not provide full isolation. The guest OS is slightly
modified and knows it is running as a VM. Virtual hardware is “shown” to the VM, allowing all calls to
the CPU to be handled correctly by the VMM. Paravirtualization is considered to be much faster. For
instance, apps compiled as unikernels provide an OS, libraries, binaries, and dependencies for a single
app. This allows an app to run in a completely isolated environment, with the kernel knowing that it
runs on a VMM (and optimized for it). Performances in a unikernel are considered to be unmatched,
even with other technologies.

The third one is called hardware-assisted virtualization. Instead of using software to enable full virtual-
ization, hardware is used as it allows for tremendous speedup. The need to modify the guest is, as with
software full virtualization (seen before), not required. This is the most used virtualization technique as
almost all CPUs have their instruction set on how to accelerate virtualization. [16].

As most CPU sold in recent years almost all have virtualization capabilities, this work will focus on the
third category of virtualization category.

Most CPUs nowadays have instructions on how to accelerate the virtualization of entire OSes. Technolo-
gies, implemented at the CPU level, allow the CPU to handle some of the virtualization workload on its
own. Those technologies are known as VT-X with Intel, AMD-V with AMD, and virtualization extensions
with ARM. This allows the CPU to be able to virtualize itself, that is, the CPU can handle being virtualized
on its own. Special instructions are implemented into the CPU instruction set, allowing the notions of
virtualization to be handled at great speeds. For example, Intel, in its Virtualization Machine eXtensions
(VMX) implements VMLAUNCH, which allows the CPU to launch a VM managed by the VMM.
Hardware-assisted virtualization is not limited to processors : other technologies allow I/O (Input/Out-
put) to be accelerated as well. For example, the VT-C technology allows for Network Interface Cards
(NICs) to support VMs, allowing for high-speed communications [17].

Those technologies allow for high processing speeds, but do not implement any isolation layer between
the host and the VMs whatsoever. Another technology, already used to specify the access level of
processes, is used to ensure VMs cannot interfere with the host’s kernel or other VMs. This technology
is named CPU rings.
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2.2.1 CPU Rings

Most CPUs run with layers (called rings), each giving access to specific permissions. Although the
number of rings is debated [18] and the name of this technology may change depending on the CPU's
vendor, Intel considers there are four rings on a CPU [19]. The outer ring, ring number three, is used for
client applications, while the inner ring, ring number 0 is for the OS kernel. An example of CPU rings is
shown on figure 2.2. Our work will focus on this model, for unicity and simplicity reasons.

Figure 2.2: Rings on an x86 CPU[19]

This means that most applications must ask the kernel for specific rights, and generally do not have
access to hardware or high-access privileges. Only the kernel decides who gets what. In fact, most
applications must pass call gates in order to gain privileges such as writing a file, accessing a peripheral,
and so on. Call gates will then decide whether or not the program can access the requested privilege.

VMs each run their kernel in what looks like bare metal (directly on hardware), but in fact, the host acts
as a VMM and orchestrates calls for each VM so that each VM is fully isolated. As each VM must run its
kernel and since every kernel expects to get ring 0 access, the VMM must run in ring -1[19]. This is a
special mode that is above the underlying VM's ring 0, and reserved for special cases when more than
one kernel is present, for example when there is a VMM. This allows the VMM to always have the upper
hand and to avoid interferences from VMs [20]. By running in ring -1, the VMM can operate normally by,
amongst many other tasks, redirect calls to memory, storage and peripheral requests to the specific
allocated resources. Ring -1 is shown on figure 2.3.
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Figure 2.3: Rings on an x86 with VMs[19]

This complex ring system allows for VMs to run without any additional configuration: an OS running
on bare metal will run similarly on a VM infrastructure. Two kernels (that is, the host’s kernel and the
guest’s kernel) can coexist without any conflict on the same hardware.

2.2.2 Virtual machines considerations

VMs are considered, due to their fully virtualized nature, as “complete” machines. This implies that a
certain number of measures must be taken to keep the VM and the VMM in good condition. While this
work does not claim to offer a complete list, several considerations are worth mentioning for context
purposes that will be used later on.

As VMs independently exist of each other, they do not depend on anything besides the VM host for
power and resources. This makes each VM a complete machine. In terms of security, considering a
VM as a machine is important : considering it as such means that each VM will most certainly require
updates and maintenance. This is paramount to the safety of the VM.
This is one of the costs of virtualizations : while it allows for proper resource management as well as
compartmentalization, it requires maintenance and monitoring, just like a physical machine would.

Considerations regarding the provisioning of resources are essential for long-term maintenance : while
a VM can run with dozens if not hundreds of CPUs, it is generally a good practice to assign just enough
resources required for the VM to run optimally, but not more. Doing so allows the dispatch of resources
more easily, and it may also help detect bottlenecks due for example to high CPU usage.

Finally, using VMs may require to consider much more the underlying hardware. For example, whether
there is enough computing power for all VMs is a question that needs to be answered. Prerequi-
sites before implementing a network of VMs may be steeper than with other technologies, such as
containers.
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2.3 Possible attacks on virtual machines

VMs are complex machinery. As described before, VMs allow not only the virtualization of the whole
OS, but the hardware as well. The guest OS has little to no evidence that there is another layer of
management above. A few techniques have been discovered to detect potential VM execution [21] [15],
which allows an attacker to detect whether the attacked machine is a VM or not.

Virtual machine breakout is the process of a program breaking out of a VM confines. Breaking out of a
VM could allow the attacker not only to control the host OS, but also to potentially control other VMs
on the same host.

Virtual machine breakouts are challenging as they present several steps, each hard to obtain. The first
one is to be able to run as the guest operating system. As presented before, each user space application
runs in the level 3 ring, while administrative actions run in the ring 0. This means that an attacker
may need to first compromise the VM kernel. This would allow the attacker complete access to the VM
resources. However, this administrative access would be limited to the VM and would not extend to
other neighboring VMs. In order to continue the attack, a second step is required : escaping the VMM.
This would allow the compromised VM to access resources outside of the allocated guest resources,
potentially accessing the VM host system memory. Lastly, as soon as system resources are found, the
attacker would have to edit system memory to gain root privileges. While attacks exploiting bad
memory management are common and have been documented [22] [23], attacks from a VM may be
significantly more difficult, due to the many indirections in between the guest and the host.

This makes virtual machine breakouts (that is, controlling the hypervisor) “not impossible, but it is
very sophisticated” [24].

2.3.1 Documented cases of virtual machine escapes

As previously mentioned, VM escapes are not impossible but considered rare. In some conditions,
such as peripherals (graphic cards or other Peripheral Component Interconnect (PCI) devices), calls
may be directly sent to the device or require drivers to run. While drivers do not run in the user space,
they still run in some cases as ring 1, which is not as high as the kernel but high enough to run some
administrative tasks.

CVE-2020-3962 is a good example of a VM breakout. VMWare products distribute a Super Video Graphics
Array (SVGA) virtual device, which allows to create a virtual graphics adapter. This may be useful
for many applications such as Keyboard, Video, Mouse (KVM) needs, VM or software depending on
Graphical User Interface (GUI), and so on.

CVE-2020-3962 exploited a bug in the virtual SVGA device (use-after-free, using a reference memory
zone after it has been freed [25])[26]. An attacker with access to a VM with 3D-enabled graphics may be
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able to run code on the hypervisor from the VM.

While documentation on this attack is sparse, information about what happened can be guessed.
The virtual device was running on the host and was published as a generic device to all VMs having
3D-Acceleration enabled. Then, drivers were made available to the user-land by the kernel.

In this case, any application that has the right to run 3D primitives can run code to the drivers, which
in turn send this code to the VMM, and finally to the virtual SVGA device running on the host. This
bypasses several of the previously presented “checkpoints” : an attacker does not have to gain root
to the VM, and does not have to escape the VMM as the attack uses a device to gain root on the host.
Finally, the device runs as a privileged process on the host. The process was flawed (as shown by
the CVE) and was allowing code that was previously freed to be rewritten (double-free attack). This
typically allows for arbitrary code to be run, completely bypassing the many securities in place to
ensure the compartmentalization of the VMs.

However, the amount of research required to find such exploits are nothing short of enormous. VMM
source codes may not always be available, and in most cases VMM discuss with low-level components
such as the CPU. Deep knowledge of the underlying processor architecture is therefore required, which
may slow down the discovery of exploits. Furthermore, a single exploit may not be enough, as one
may obtain root privileges but another one would be required to breach the VM confined.

VMs may be considered as “heavy” or “bulky” due to its many additional responsibilities, but they do
generally provide a thick layer of isolation between the host and the guest. In our next subchapter, we
will focus on the container technology, that provides isolation at a much higher layer, but in a lighter
way.

2.4 Containerization

The first concepts of containers are more recent than the first iterations of virtualization. In fact,
containers were known as jails, and have existed since 2000 in FreeBSD. Many projects have been
published in between now and then, for example the VServer project in 2004. The most significant
advancement was in 2007 [27], when the Linux Kernel included a module for containers in its system.
This module, called cgroups, provided resource groups and allocation for processes running on the
same host. This meant a process could have allocated resources for itself, but not exceed resources at
its disposal.

In fact, this module led the way for technologies as we know today such as Docker, Podman and many
others.

Containerization is a technology that also allows compartmentalization, and proper dispatch of re-
sources. From a user perspective, it is the same as a VM : the user can connect to the container just the
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same, packages can be installed, filesystems can be mounted and so on. However, it could not be more
different from VMs. While the concept is the same, containers (what was referred as guests before) do
not provide the same level of isolation. For instance, containers do not allow for the virtualization of
hardware.

In fact, a container is a single process hosted on the host and barely more. The OS uses specific
processes to ensure the “inside” of the process is isolated from the rest of the system. However, all
containers run on the Host’s OS, and use the same resources. Because the guest and the host share
the same kernel, there is no way of tricking the guest into thinking it is running as an OS, first because
the guest is a process, a simple unit inside an OS instance, and second because the isolation is too thin
to allow the guest into thinking this.

The key differences between containers and VM are shown on figure 2.4.

Figure 2.4: A comparison chart between VMs and containers [28]

There are two main advantages to use containers instead of VMs :

• The first one is that containers generally are extremely light : a container can start in a matter of
seconds, due to the fact that a container does not have to load any driver, initialize the hardware
or handle lengthy booting procedures. This also removes any requirements of virtualization
extensions presented before, such as VT-X or AMD-V, as in most cases 1 there is no virtualization
at hand.

• The second one is derived from the first : given a container is not an actual VM, it is not considered
as a machine as such. This also allows maintenance to be lessened, but not removed.

1Linux operating systems do not need virtualization as they have all the required modules to run containers directly.
Proprietary OS such as Microsoft Windows and Apple Mac OS X generally run a light Linux VM that bridges the host OS
(Windows or Mac) and the containers.
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From an executive and financial perspective, as containers are lighter than VMs, more can be hosted
on the same host, and most containers will start much faster than its VM counterpart. Those two
advantages attract much of the industry as it helps reducing costs. Nowadays, most OSs, if not all, are
able to run containers, from Microsoft Windows to Solaris, regardless of the underlying hardware.

The main disadvantage of using containers is the downside of its greatest advantage : the lack of a
complete isolation. While several mechanisms ensure an isolation between the container and the host,
each of those mechanisms can either be disabled by the user or be compromised. In those situations,
the host machine would be exposed.

Another disadvantage of using containers is that the OS is aware that it is not running on bare metal, as
there is not enough isolation to “trick” it. Furthermore, most container engines leave traces suggesting
that the current environment is, in fact, currently running in a container. This would let an attacker
easily gather many information about the current environment, for example the model of CPU or to the
container engine currently being used. Those informations are preferably kept confidential or away
from prying eyes, as those could lead an attacker to find vulnerabilities or sensitive files or variables.

2.4.1 Use-case of containers

Containers have many uses, but one that is particularly applied is the use of the microservice approach.
Rather than having one monolithic application, that is one that contains one database, one web server,
and one system handling business logic, the microservice approach recommends creating one service
for each module of the application : one service for the database, one for the web server, and so on.

This allows to untangle the many dependencies each system has, concentrating on creating a space just
wide enough for each service to fit. Containers do provide the necessary tools to create environments
containing little resources, networks to group services together along with systems to accommodate
high availability and load balancing. The difference between monolithic and microservice-oriented
architectures are shown on figure 2.5.
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Figure 2.5: Example use of containers through microservices. [29]

As containers can be quickly created, configured and run, the microservice approach is usually preferred
with containers rather than with VMs. Most Cloud Service Providers (CSPs) provide guidelines on how
to implement this architecture on their platform. As this work will focus on security incursions, we will
not use CSPs but rather host our own containers, isolated from any other infrastructure.

2.4.2 Security mechanisms of a container

The Linux Kernel provides a resource management system to limit what a container can actually access
[10]. For instance, a container should not be able to impact the activities of other containers.

This resource management system revolves around four key technologies (also called security prim-
itives), each responsible for one specific element of isolation. This work goes in-depth for each of
those technologies in chapter 3, but it is worth mentioning that those four security privimitives work in
concert to ensure a level of isolation that allows the container to run without being able to see the
other processes on the host. For instance, running ps on a host will show the container and its children
processes, but running the same command from the container will not return the process from the
host. As processes are organized into a tree, containers can be considered as a leaf in the process tree
of the host, with no access to its parents.

Additional security mechanisms already included with Linux and most container engines can also
be configured to further restrict the container. By default, container engines provide a default set of
settings, which generally allows a wide range of containers to run, while keeping an optimal level of
security. While this balance is challenged by publications suggesting it is best to restrict the container
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as much as possible on a use-case basis [30] [31], most attacks can be stopped by a container using the
default configuration. One example of security mechanism that is included with Docker is AppArmor,
which confines a program to specific resources. For instance, an AppArmor profile could force a
container to be able to work only in /data/app, or to use specific ports.

A container running a configuration with minimal changes will most likely not be impacted by attacks,
but containers running with a separated configuration set, regardless for a good reason or not, may be
more impacted by attacks than one running with the standard configuration.

2.5 Possible attacks on containers

As previously mentioned, four security primitives work together to keep the container isolated. It is
very important to denote that each technology has a specific area of expertise in mind, and that they
barely overlap on another. While this avoids interference from one technology to another, it means
there is no “safety net” : should one of those technologies fail for any reason, the thin isolation layer
may “break”, exposing the host, along with the other containers. In fact, those four security primitives
are the only layer isolating the container, represented by a group of processes, from the host.

As described before, a VM has much more isolation than a container. Most attackers focus on breaking
out of a container, as it is much easier than with a VM. A container breakout can occur in mainly two
cases : either the container was misconfigured or the container engine had a flaw. As most security
experts agree, misconfigurations are quite common, even in production environments. However, mis-
configurations can endanger the safety of a container or the whole container host, as misconfigurations
can remove isolation features between the host and the container. In such cases, an attacker gaining
control of a container could get out of the container (breaking out) and gain access, albeit potentially
limited, to the container host.

In cases where the container engine is flawed, the attacker does not exploit a weakness in the container
configuration but exploits how the container is handled. For instance, CVE-2019-5736 [32] allowed
attackers to rewrite the container runtime process (in this case, runc) on the host, therefore gaining
root privileges. However, those attacks are more sophisticated as they require a specific container
engine and version. Because of this, misconfigurations are usually considered the preferred way of
breaking out of containers.

As with any software, there are many vulnerabilities, but the most exploited ones are the weaknesses
left by misconfigurations, as they may allow trivial access outside the container. This allows an attacker
to take over a system with very little time, as the container may also have access to other containers
and hosts, allowing the attacker to move laterally to those other systems.
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2.6 Container attacks nowadays

Container vulnerabilities require specific versions of the container engine and do not work in all cases.
Misconfigurations, on the other hand, can leave vulnerabilities in the long term. They are therefore the
preferred method of attack on containers [33]. This is also because testing container misconfigurations
can be quickly done, should an attacker get access to a container. Automated scans and exploitations
of weak, exposed machines is already a common problem, especially with the rise of Internet of Things
(IoT) devices [34]. An attacker getting access to a container can, as presented before, automatically
gather information about the host, but also see, if ports have been exposed, if volumes connected to
the container are insecure and so on. This can be achieved in a matter of seconds, by systematically
checking services, files, and networking information on the container.

Containers are popular amongst attackers because they are used in many different scenarios, es-
pecially often within development scenarios or environments with little to no security concerns in
mind. For example, containers can accommodate dependencies and provide a quick and ready-to-use
development environment, but with many opened ports, which could lead to security gaps.
Furthermore, as there are at this time of writing hundreds of thousands [35] of containers, most needs
are already fulfilled by third parties. For instance, nginx provides a web server image ready to use.
This allows many developers not to create their containers and rely on existing containers, but this
also means that developers using those containers have little to no knowledge of the inner workings,
dependencies, or potential weaknesses of the third-party container.
Moreover, many companies provide ready-to-use files or command lines to copy-paste, obfuscating
the behaviour of the containers.

This ease of use is beneficial for many users, from developers to companies, but it also hides the
complexity of container isolation mechanisms. This may induce users to cut corners to achieve their
objectives faster, for example by removing isolations between the container and the host. For example,
in order to create containers on the go, certain companies have exposed their Docker socket. While this
may be very useful in many scenarios, exposing it without proper security measures gives direct access
to attackers inside the company servers [36], leaving attackers with what is essentially an opened
root shell.

Another popular attack is typosquatting : as many developers and users prefer existing, popular con-
tainers available on container hubs, they use those instead of having to build out their own. However,
typing the name of the container wrong may be an actual security threat, as attackers have registered
containers with names quite similar to the popular container names, for example registering a con-
tainer named ngixn for a nginx container [7]. Downloading such a malicious container will not
necessarily mean that the entire infrastructure will be compromised, but it does mean in most cases
that an attacker had indirect access to all containers in the same network.
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In fact, many other security risks related to containers do now exist [37], and are considered by some
as an emergent field in security, whether it is in research or in its application.

2.6.1 Existing container security tools

In most security scenarios, one can categorize tools either for red teams (teams dedicated to breaching
an infrastructure) and for blue teams (teams dedicated to defending the infrastructure against red
teams). This is by no means different here, as both tools exist in this case : tools to break out of
containers, and tools to protect them.

2.6.1.1 Red team tools

While there are existing tools that are able to scan containers for vulnerabilities or to gather information
[38] [39] [40] [41], no results are delivered nor verified, and all seem to concentrate on Docker, as this is
the most popular tool [42].

It is therefore impossible to evaluate the performance of either the tool or any security score of the
container. Moreover, tools found on communal websites such as GitHub cannot be considered as
trustworthy as they could pose a threat. However, it is interesting to denote that tools either designed
to break out of containers or find vulnerabilities statically are numerous, showing a trend towards
container security.

There are a number of publications on security assessments on containers made by researchers. Sev-
eral publications show the use of containers in popular environments such as cloud, which allowed
attackers to gather information about other tenants in specific cases, for example when the attacker
and the other tenant were running on the same hardware [6] [43]. The results suggest that the iso-
lation between containers, even when those containers do not belong to the same owner, cannot
be considered as secure. In fact, many exploits have been found to be working in default container
configurations, highlighting with how little security containers can run with [30].

2.6.1.2 Blue team tools

On the other side, security tools hardening container engines exist but are not widely adopted, as most
container users use official releases, rarely containing additional, external security tools. Automated
tools to harden seccomp profiles allow containers only to receive calls they do need to function [44],
using static code analysis to generate a list of used (and therefore allowed) seccomp calls. [45]. The
use of Seccomp and AppArmor technologies to enhance the overall container security is backed up by
publications [46] [44] [47], proving this mean to be effective.
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Big Tech industries such as Google have also rolled out sophisticated tools such as distroless containers,
containers with just enough requirements to run their intended payload [48], but those solutions are
described by third parties as [49] inadequate, mainly because they alledgedly solve problems that
do not exist. For example, Red Hat mentions that while reducing the container image size is optimal
practice, it does not necessarily reduce the attack surface. They also mention that the term distroless
is misleading [49], as any app and container require an underlying operating system (or distro). It is
interesting to note that security efforts, even coming from Big Tech are thwarted and almost considered
as hostile by others.

Reports suggest that security efforts were made towards the statical analysis of containers [9], effec-
tively reducing the attack surface of each container. Such tools will detect and potentially patch images
with outdated dependencies [50] [51] [52].

While statical image analysis optimizes the coverage of optimal security practices, there are few tools
made for dynamical container analysis, that is scanning the container once it is running, and not the
container image in itself. While container engines published tools able to detect misconfigurations
[41], there is little to no evidence suggesting this tool is popular or widely used in the container users
community. Mature organizations, such as CSPs like AWS and Microsoft Azure, have started using
dynamical container analysis such as Falco [9] [53], but there are no publications suggesting this is
a widespread practice. Worse, the few tools able to detect anomalies in real time are policy-based,
which may be circumvented by new attacks [54].

Many other security tools and practices exist : from containers running as unprivileged users to contain-
ers inside VMs, or containers running on trusted platforms such as Intel Software Guarded eXtensions
(SGX) [55], many techniques allow containers to run in environments that can be described as more
secure. However, a tool is only a part of the solution as a tool requires someone to use it, and tools may
not be widely adopted, causing problems either with exotic configurations, or scalability when using
orchestrators such as OpenShift or Kubernetes. For instance, there is no evidence Intel SGX containers
are entirely compatible with orchestrators. Furthermore, SGX may require applications to be changed
to fit SGX requirements, removing the technology agnosticism from the changed applications.

Tools are not the only measure taken to protect containers. A number of publications show an interest
towards container security. Researchers are studying the possibility of frameworks able to thwart
container attacks based on Bayesian Game theory [56] to propose a new security baseline for containers.
Others have studied attack mechanisms through applied means with honeypots to build detection
rules [57]. Security researchers also categorized the main attack vectors required to protect both
containers and hosts from container-related attacks [37].

In contrast, many container authors usually provide ready-to-run commands or files to deploy their
containers easily, with little to no security in mind. For example, containers may suggest exposing the
host’s network interface card instead of using a virtual one, thus exposing the host to the container,

Théo Pirkl 28



Tesseract : a proposal for a container breakout tool January 2024

where a port forwarding would have sufficed in most cases.

This generalized behaviour is getting more common by the minute, as most users are not interested in
the installation or configuration process but usually wish for a turnkey system. This results in many
software giving arbitrary commands to copy-paste or to pipe directly into the user’s shell [58], which
may cause catastrophic damages either by an attacker, bad network configuration, or just by bugs in
the third-party script. For instance, Tailscale, a known Virtual Private Network (VPN) solution provider,
suggested in early 2023 downloading a script and piping into a shell. This example is shown on figure
2.6.

Figure 2.6: Example of a company suggesting piping an external script directly into the shell

While it is important to denote that Tailscale made efforts to allow users to see the contents of the
script before running it, it is still a common practice to pipe third-party scripts directly into the terminal
[59] [60] [61].

2.7 Conclusion

Monolithic infrastructures are slowly considered obsolete. Existing tools to separate concerns and
services into bricks are now broadly used. Two techniques exist and have been presented in this
chapter : VMs or containers. VMs are considered to be generally more secure, but they also have in most
cases much more overhead than containers (as the VM generally do virtualize everything, from the
BIOS to each component of the VM), which makes them slower. It also implies periodic maintenance
on them as they should be considered as computers. VM that do not need to virtualize everything are
considered much faster, such as unikernels or paravirtualization. Containers, on the other hand, are
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considered in almost all cases light and fast, and not as a whole machine but rather like an isolated
group of processes.

Both technologies are widely used and provide a way of splitting units of a service or a business into
smaller bricks. However, each technology has its own weakness as well, leaving each of them with a
specific set of attacks. VMs can be broken out of with sophisticated attacks, whereas containers can be
broken out with less efforts due to bad configuration or poor security planning. Given that container
attacks are more popular and less sophisticated, an attack on a container can rapidly lead to a breakout
and potentially the host getting compromised. Many security actors are assessing the different attack
vectors on containers, and many have found a significant number of exploits leading experts to declare
containers to be not secure due to the kernel-sharing property [30]. To protect containers against such
attacks, mature organizations and researchers have started the research of tools and technologies to
protect the container against attacks, some of which will be described in the next chapter.
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3 Container engines

Container engines are the core of the container technology. They orchestrate how containers run, what
they can do (and most importantly what they cannot), what they can access and so on. As presented,
container engines make use of existing embedded Linux technologies to allow containers to run. While
each container engine has its own set of particularities, most of them work in a very similar way.

As our tool requires a deep understanding of containers, it is paramount to present and analyze how
containers work in detail, as this will be relevant in the following chapters. Before presenting containers
in-depth, our work focuses on the many tools and engines available on the web to run containers.
Linux processes will be quickly introduced in subchapter 3.1, as containers depend on their structure.
Kernel modules typically running containers will be presented in subchapter 3.2, along with their area
of expertise. The use of containers in the industry is then presented in subchapter 3.3. Finally, the
orchestration of containers, that is the management of containers without the worry of underlying
hardware [62], will be presented in subchapter 3.4.

3.1 Linux processes

Linux processes are the core of the Linux Operating System (OS). They allow resources to be grouped
together. There are many important properties in a process structure, however, our work focuses on a
few characteristics.

• Links are used to refer a process to its parent [63]. The initial process, often called init, is the
only one parentless. All other processes depend on another, from the moment they start to the
moment they stop. This forms a tree, in which the root is the main process executed at startup.
Containers are no exceptions : they are created as children of the program in charge of running
containers (the container runtime). An example of process tree is shown on figure 3.1.

• Identifiers, which describe the process’s permission. A process possesses four pairs of identifiers,
only one of which is relevant to our work : User IDentifier (UID) and Group IDentifier (GID). The
UID identifies the user that the process is running on behalf of [63]. The GID works on the same
principle, only for a group instead of a user.
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• The process identifier, which consists of a number starting from 1 (0, in some cases), representing
the identifier of the process. Each process identifier is unique, and process identifiers are reused
over time.

By the previous definitions, containers are then nothing more than a group of process. However, it
is known that containers are more than that, as they are isolated from each other and the host. The
mechanisms to ensure each container can live with the aforementioned characteristics are defined in
the next subchapter : kernel container modules.

Figure 3.1: Example of a process tree [64]

Figure 3.1 shows the tree structure. This structure privileges isolation for each user, as a user will have
a main process, then others stemming from it. In this case, one can quickly see that the ps process on
the bottom left is linked to the bash interpreter, which is linked itself to logind, which is in charge of
user logins.

3.2 Kernel container modules

As discussed in our state of the art, there are four modules allowing containers to run :

• SecComp, which define which kernel calls a process is allowed to do;
• cGroups, which define the limits a group of container is allowed to consume, whether it is the

Central Processing Unit (CPU), Random Access Memory (RAM) or the hard drive;
• Namespaces, which create separate environments (called namespaces) for networking, user and

group IDs, and many more;
• Capabilities, which allow to give specific permissions to a process instead of “lending” it the
root account.
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Additional security tools such as SELinux and AppArmor also exist, are shipped with popular container
tools and allow containers to be restricted even more.

3.2.1 cGroups

Control groups, referred as cgroups in the Linux Kernel [65] allow to group processes together and to
control and monitor the amount of resources a group of processes (called a control group, hence the
name) is allocated.

CGroups allow the control of many resources, such as the CPU time, memory, network bandwidth, and
so on.

By default, container engines do not restrict the resources made available to the containers [66]. In
some cases, this may be an issue as a container with leaking memory issues or one with malicious
intents may end up taking all available memory, crashing other containers and potentially the host.

It is also important to understand that while cGroups is able to restrict the amount of resources a
container has, it is not able to hide the resources themselves. This is shown on figure 3.2, which shows
that while cGroups has restricted the number of CPUs of the container to 1, it is still able to see the
two cores the container host has at its disposal. The number of CPUs the container is allowed to use is
highlighted in green, while the number of CPUs the container can see is in red.

labo@master:~$ docker run -it --cpus="1" debian /bin/bash 
root@8b2cc91122ba:/# lscpu 
Architecture:            x86_64 
  CPU op-mode(s):        32-bit, 64-bit 
  Address sizes:         46 bits physical, 48 bits virtual 
  Byte Order:            Little Endian 
CPU(s):                  2 
  On-line CPU(s) list:   0,1 
Vendor ID:               GenuineIntel 
  Model name:            Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz 
    CPU family:          6 
    Model:               85 
    Thread(s) per core:  1 
    Core(s) per socket:  1 
    Socket(s):           2 
    Stepping:            7 
    BogoMIPS:            7007.99 
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clf 
                         lush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_pe 
                         rfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3  
                         fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes 
                          xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault inv 
                         pcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority 
                          ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx a 
                         vx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl  

Figure 3.2: lscpu showing the whole host CPU

As lscpu reports, sensitive information, including the CPU model, frequency and vulnerabilities, can
also be found, either by a tool or directly from the /proc mount. However, this is expected behaviour
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from cGroups, as it does not focus on enforcing a reduced view of the resources at hand. This still
means information such as the CPU model, the number of cores or the available physical memory
about the host cannot be hidden.

3.2.2 SecComp

As of this writing, there are several hundred system calls in the Linux Kernel [67]. As most programs do
not use all available system calls, the ones not used should be disabled for security reasons.

Seccomp is used to limit the system calls a process is able to make, effectively sandboxing a program.
This mitigates many attacks if configured correctly. However, seccomp [45] is neither automatic nor
dynamic. Default settings are applied on a recommended base by each container engine : default
settings may not be sufficient or in some cases, useless. Studies suggest that generating seccomp
profiles may be a way to greatly enhance the usefulness of seccomp [44] [47], but this requires additional
and external tools, as well as an understanding of how seccomp works beforehand.

An example of seccomp is shown on figure 3.3, with a custom seccomp profile. This profile restricts
the use of both the mkdir, socket, and connect system calls, thus blocking the creation of a new
folder and/or block any traffic through networking or processes, as socket or connect are used to either
listen or connect to other processed, regardless of their location.

Figure 3.3: An example of a custom SecComp profile [68]

SecComp therefore allows a program to be restricted, even if root is the user asking for it. This is
perfect for containers, as most containers simply run as root inside. Whoever the user is, system calls
can still be restricted to the previously defined set by the container engine.

3.2.3 Namespaces

Namespaces allow for isolation of resources of many types. Linux supports many namespace types
[10]. For instance :
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• The network namespace, which allows to isolate network environments. This allows to create
virtual network interfaces, separated IP routing tables, firewall rules and much more. [69]

• The user namespace, which allows isolation of user and group IDs. This isolation allows to specify
different permissions to each process, even though they share the same user or group ID. This is
very useful for containers : the root ID could be considered 0 in a container but would be actually
considered 68394 in the host system.

• The mount namespace, which allows for “isolation of the list of mounts seen in each namespace
instance” [70]. This means, from the container perspective, that each container will have its
own filesystem that will be kept local to the container only. For instance, should the container
unmount a drive, the other containers will not be impacted by this unmount.

Namespaces are the reason why containers cannot see their “outside”, that is the container host. An
example of namespace is shown with the different point of views on figures 3.4, 3.5 and 3.6.

labo@master:~$ pstree 
systemd─┬─agetty 
        ├─containerd───7*[{containerd}] 
        ├─cron 
        ├─dbus-daemon 
        ├─dhclient 
        ├─dockerd───8*[{dockerd}] 
        ├─qemu-ga───{qemu-ga} 
        ├─snmpd 
        ├─sshd───sshd───sshd───bash───pstree 
        ├─systemd───(sd-pam) 
        ├─systemd-journal 
        ├─systemd-logind 
        ├─systemd-timesyn───{systemd-timesyn} 
        └─systemd-udevd 
labo@master:~$  
 
 
 
 
 
 
 
 
 

Figure 3.4: pstree ran before running a container

Figure 3.4 shows there is no container running. By running docker run -td debian, a container
will be created. The difference is obvious and can be seen in figure 3.5. The red square contains the
container : the host can therefore see the main process and its children (in this case, as the container is
recent, none are shown).
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labo@master:~$ docker run -dt debian /bin/bash 
91ab307ab4c733c5f73b42741f11f4b51223ff929d35fe761b0c94853c35a9aa 
labo@master:~$ pstree 
systemd─┬─agetty 
        ├─containerd───8*[{containerd}] 
        ├─containerd-shim─┬─bash 
        │                 └─10*[{containerd-shim}] 
        ├─cron 
        ├─dbus-daemon 
        ├─dhclient 
        ├─dockerd───8*[{dockerd}] 
        ├─qemu-ga───{qemu-ga} 
        ├─snmpd 
        ├─sshd───sshd───sshd───bash───pstree 
        ├─systemd───(sd-pam) 
        ├─systemd-journal 
        ├─systemd-logind 
        ├─systemd-timesyn───{systemd-timesyn} 
        └─systemd-udevd───5*[(udev-worker)] 
labo@master:~$  
 
 
 
 
 

Figure 3.5: pstree ran while running a container

From the container, nothing can be seen, apart the main process launched by the container itself. This
is shown on figure 3.6.

root@1f7b8a2c6760:/# pstree 
bash 
root@1f7b8a2c6760:/#  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: pstree from the container

The same can be seen from the networking point of view, as container and host do not run within the
same namespace by default.

1 # On host
2 labo@master:~$ sudo arp -a
3 ? (172.17.0.2) at 02:42:ac:11:00:02 [ether] on docker0
4 ? (192.168.2.1) at 23:80:e0:67:1b:33 [ether] on enp1s0
5 ? (192.168.2.180) at 00:e4:6b:04:e9:99 [ether] on enp1s0
6
7 # On container
8 root@1f7b8a2c6760:/# arp -a
9 ? (172.17.0.1) at c4:1f:a2:52:f9:6e [ether] on eth0

In short, namespaces allow to create fully isolated “universes”, which are essential for containers. With
this mechanism, not only it is possible to securely isolate the host from the containers, but container
can also run in a brand new environment without any side effects.
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3.2.4 Capabilities

Linux-based systems usually include two types of users : those with administrative privileges and those
without. The super user root can do anything on a system, which usually means great responsibilities
that cannot be shared with many (if any) users. Therefore, all processes that require the slightest
administrative privilege would require root access. This is far from being ideal : should a program
running with root privileges be compromised, catastrophic damages may incur, as root privileges
are exempt from any restrictions.

This is what capabilities address : instead of a boolean access-control list (either root or not), ca-
pabilities allow certain actions to be granted while blocking others. As of this writing, 38 capabili-
ties exist [71], each controlling a very specific aspect of the Linux Kernel capabilities. For instance,
CAP_SYS_MODULE allows a program to “Load and unload kernel modules” [71]. Some capabilities
are used much more than others, and all capabilities are not equal : CAP_SYS_ADMIN, while being
dropped out, gives much more rights than any other capability.

As containers work on an explicit allow list for capabilities, many of them are dropped when a container
starts. The capability set that is left allows all changes made to the container to remain within the
container boundaries. However, giving certain privileges may break that isolation layer. For instance,
giving CAP_SYS_ADMIN to a container would allow it to mount the host’s filesystem. This could
lead to catastrophic consequences as all files would be potentially exposed (the file containing the
passwords, sensitive variables, other services or machines, etc.).

Container engines give default capabilities [72] [73] that greatly limit the capabilities of a container,
allowing the container to run properly without interfering with the host.

Containers requiring additional capabilities, such as containers with specific networking needs (Virtual
Private Networks (VPNs), web servers with integrated firewalls, and so on) almost always specify which
capability should be added. However, some capabilities may not be required, either because it was
left over, or because the container user does not need the feature requiring the capability. Regardless
of the reason, adding capabilities to containers without having a good reason can be dangerous, as it
always expands the attack surface of the container.

In general, capabilities are not enough to allow for a full breakout, and additional requirements are
needed. However, adding capabilities blindly is already an extremely insecure practice as it may allow
the container to perform unwanted actions. For instance, adding CAP_NET_ADMIN, which may be
required for some networking applications, also allows the container to get out of the networking
namespace and listen to traffic on the host’s namespace.
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3.2.5 AppArmor

AppArmor is a system working like SecComp. While SecComp allows to filter system calls, AppArmor is
a Mandatory Access Control (MAC) working as a Linux Security Module (LSM), allowing to define an
access control mask for a specific program. For instance, AppArmor allows to limit the access to the
host devices, rendering device access from the container impossible without specific settings.

An example of AppArmor protecting the host is shown on figure 3.7. Two containers, each running
with AppArmor on and one with AppArmor off, try to mount /dev/vda1. This drive contains sensible
information, including the shadow password file of the host, as well as other files that could be used
by attackers to compromise the host and the network.

labo@master:~$ docker run --rm -it  --security-opt apparmor=unconfined --device /dev/vda1 --cap-add=CAP_SYS_ADMIN debia
n 
root@310d3b872de5:/# mount /dev/vda1 /mnt 
root@310d3b872de5:/# ^C 
root@310d3b872de5:/#  
exit 
labo@master:~$ docker run --rm -it --device /dev/vda1 --cap-add=CAP_SYS_ADMIN debian 
root@c27490433e7d:/# mount /dev/vda1 /mnt/ 
mount: /mnt: cannot mount /dev/vda1 read-only. 
       dmesg(1) may have more information after failed mount system call. 
root@c27490433e7d:/#  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: mount ran while running containers

AppArmor is automatically deployed with popular container tools, such as Docker or Podman, but as
with SecComp, a permissive profile is provided. It may be required to generate hardened profiles [74]
for better or more container-specific results.

3.2.6 SELinux

SELinux, short for Security Enhanced Linux, is a LSM written in collaboration with the National Security
Agency (NSA) [75]. It provides similar features than AppArmor, but is considered to be more extensive.
SELinux works by assigning label to files, or processes. Labeling files allows to group data of the same
label. Then, only users with access to the specific label can access said files or processes.

SELinux is considered to be way more complex than AppArmor by the system administrators community,
but due to its flexibility, it is popular and often used in production environments.

A good use-case of SELinux would be in environments where servers run containers with different
sensitivity levels : SELinux would allow a complete separation between the sensitive containers and
the ones that are not.
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The diagram showing the behaviour of SELinux is shown on Figure 3.8.

Figure 3.8: Behaviour of SELinux [76]

SELinux works in two modes : permissive and enforcing. Permissive mode allows to set up proper
policies, as this mode will log everything that is happening with the tracked files. Enforcing, on the
other hand, will block calls outside the policy. Both modes will log system calls : regardless of the
SELinux mode, discrepancies could quickly be tracked down, should monitoring tools be deployed
and configured properly.

For instance, a container that is allowed to read specific files but suddenly tries to access files outside
that scope may be compromised. SELinux would therefore not be able to prevent containers to be
attacked or compromised, but could certainly block further progression from attackers.

However, SELinux policies need to be written “by hand”, as containers do not provide a general-use
policy nor turnkey solutions for this kind of LSM. The publications seem to indicate that it is possible
to a certain extent to detect configuration errors [77], but the lack of publications on the automatic
generation of SELinux policies seems to indicate that this remains a manual process.

3.2.7 OS containers and App containers

While containers in the industry mainly focuses on containers containing a service (an app), there are
actually two categories of containers that exist.

• App containers such as the ones that can be found on the Docker Hub, are containers meant to
host a single service. Docker, as well as Podman, and generally most container tools, generally
provide app containers.

• OS containers, which do not focus as providing a service but rather an entire OS. Altough those
containers are less frequent, they do provide a complete OS. This may be useful for application
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that are being developed, datacenters, and so on. LXC, as well as Docker, are able to run OS
containers.

3.2.8 A note on container hardening

Many containers provide configuration suggestions, recommendations for specific uses, and so on.
However, little to no container editors provide made-to-measure SecComp, AppArmor or SELinux
profiles with their containers. We suppose this is because the general profiles are working and that
this part is exclusively considered for administrators to handle.

Regardless of the reason, there is little help from the community for custom-made profiles. This essen-
tially means that very little users change the default profiles of the container, which is overpermissive
for many uses.

3.3 Industry use of containers

Statistics show a massive use of containers throughout the industry, whether it is with Cloud Service
Providers (CSPs) or in-site infrastructures [42]. In 2023, 55% of StackOverflow users responded Docker
was their most used tool [78]. However, container users do not manually interact with the kernel
modules, nor do they create processes manually. This subchapter focuses on the entities present in
container architecture.

3.3.1 Container architecture

The main entities of the two main container tools are shown on Figure 3.9. Docker and Podman are
amongst popular releases of container tools.
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Figure 3.9: Translated container architecture diagram for two popular container tools [79]

As shown on figure 3.9, Docker and Podman are only high-level tools, which interact with container
runtimes, such as runC or containerD. Docker1 uses both a command-line interface and an Application
Programming Interface (API) to allow users to create, maintain and destroy containers. High-abstraction
container tools such as Docker depend on two repositories where containers are stored : the local
directory, which usually acts as a cache, and a container registry. This container registry can be seen
like an App Store where users publish containers that have not been instantiated yet, called images.
Each image is a complete container that can be executed. The most known container registry is the
Docker Hub, where hundreds of thousands of images are available to everyone.

Simple images exist, such as web servers, but more complex images are also available, some of which
contain corporate secrets or sensitive informations [5] due to accidental publishing to the Docker Hub,
or incorrect scrubbing of sensitive data.

Designing containers should, as every product should, contain the evaluation of a risk model. This
would allow to perceive how much time would be required to patch containers should a security issue
arise. In case where the risk model indicates that the time required is high, shifting to alternative
solutions may be in the interest of the container administrator. For instance, rather than simply leaving
containers, the impacted containers may be put in Virtual Machines (VMs) to limit breakouts. While not

1For the rest of this chapter, our work will only refer to Docker for simplicity reasons, but statements can be extended to
other container tools such as Podman.
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all container engines support multihost networking, VMs providers usually provide the guests with a
software-defined networking service that may be of use to bridge all containers, as if they were on the
same host.

3.3.2 Popular container tools and runtimes

Several container tools exist, including ones that are extremely popular. StackOverflow’s 2023 devel-
oper survey lists Docker as the most used tool [78] in all respondents, with other container tools such
as Podman listed way down in the list.

It is known that Docker is widely used for containers, as most infrastructures found on the web propose
a Docker Compose file, a file defining a group of containers into an architecture. De facto, this file has
become the standard in the industry [80], pushing other container tools to use this format as well.

Docker, which offers a wide set of features, from container port redirection to the host, volumes to link
files from the host to the container and vice-versa. Docker containers run with a daemon, which itself
is executed as root. Therefore, by transitivity, all containers are run as root. This is heavily criticized
[79] [9], as an attacker breaking out of the container would gain a significant foothold on the container
host.

This is fixed by other container tools such as Podman, which runs containers on behalf of the user
running the container. Those containers are called rootless. However, containers sharing the host’s
kernel cannot be considered as fully isolated [81].
Other tools, such as Kata, which runs the container from the inside of a VM for each container. An
example of Kata containers is shown on figure 3.10. Publications suggest that Kata containers are by
far the most secure [82].
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Figure 3.10: Scheme of Kata containers [83]

Other container tools, such as Nabla containers or Amazon Firecracker, also address the issue of the
host kernel by adopting an attack surface reduction by using unikernels. As with unikernels, instead of
including a complete OS inside of it, a library implementing most system calls is added. This results in
only a tiny fraction of system calls being used.

Finally, tools like gVisor find a middle ground, where the container runtime is replaced from runc to
runsc. Like with Nabla containers, system calls are captured and redirected to a specialized process.
Only very few system calls actually make it to the host.

Despite all efforts made to ensure containers can be trusted as isolated sandboxes, Docker still remains
the most used container tool. Technologies like Firecracker, Nabla, or Kata are mostly used by CSPs to
ensure an optimal level of isolation in between each tenant. However, most containers developed or
hosted in an organization will almost always be developed with Docker.

3.3.2.1 Container runtimes

Docker as well as Podman are tools designed to interact with low-level components, themselves
interacting with the Kernel to run containers. In order to run containers, a container runtime is required.
As with container tools, there is more than one tool available, as suggested on figure 3.9.

On the lowest level, runc is responsible for “for spawning and running containers on Linux according
to the Open Container Initiative (OCI) specification” [84]. Other projects compatible with the OCI also
use alternatives such as crun, an equivalent of runc written in C instead of Go. As Red Hat specifies,
using a runtime that is not runc also allows to add experimental features, as other runtimes are less
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bound by the OCI specification and thus is allowing those runtimes to be considered as playgrounds
[85].

Outside of the OCI, LXC also allows the execution of containers. However, LXC focuses on OS containers,
that is containers that aim to be “as close as possible as the one you’d get from a VM but without the
overhead that comes with running a separate kernel and simulating all the hardware.” [86].

Other tools, considered as high-level can be run over runc, as previously shown on figure 3.9. For
instance, Docker runs by usingcontainerd, a daemon that is responsible of the download of remote
containers from the Docker Hub; it then hands over the task of running the image container to runc.
containerd is not the only high-level container runtime there is available. For instance, cri-o is
used in another container runtime designed for orchestration purposes.

3.4 Orchestration

Most organizations will agree that one container host may not be enough, should it be for organizational,
redundancy, latency or other technological reasons. As Docker and similarly other container tools
have an API and they are able to be controlled remotely, it is therefore possible to create a cluster of
container hosts to distribute the load of containers across said cluster. An orchestrator would control
which container goes where, and so on. As of this writing, three main orchestrators exist :

• Docker Swarm, which allows a cluster of hosts running the Docker engine to run containers with
load balancing, scaling, and much more. As expected, Docker Swarm only accepts Docker as the
container tool running. A scheme of a Docker Swarm cluster is shwon on Figure 3.11.

• Kubernetes, which is the most used container orchestrator nowadays, whether on-site or in
the cloud. Kubernetes does not limit the technology that is used below it, as long as it can run
within Container Runtime Interface (CRI) specifications, such as cri-o. This allows to use a
wide variety of container technologies, should it be runc, containerd, Kata containers, and
so on. As Kubernetes introduces many terms that go well beyond the scope of this work, a typical
Kubernetes schema will not be shown.

• OpenShift, which is an Kubernetes overlay with additional features on top of it.
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Figure 3.11: Scheme of a Docker Swarm cluster [87]

Kubernetes is the de facto standard in organizations nowadays. Big CSPs provide Kubernetes infras-
tructures ready for use [88], and organizations from various sizes also use Kubernetes [89].

While container orchestrator administrators will agree that it is essential for an organization to have
orchestration over the container cluster, orchestrators usually add services on top of the container
technology, which spreads the attack surface further [90].

As container orchestrators add a layer of complexity, that we will only implement attacks focused on
the container and not the container orchestrator, and that it is our belief that most attacks running
on containers not within a container cluster will most likely work within one, our work focuses on
containers that are on a single host, running a container tool without any additional orchestrator.

3.5 Conclusion

This chapter presented the many parts present in a container environment, from the container kernel
modules to its orchestrators. This knowledge is critical for a proper understanding of containers,
especially in a scenario where containers are going to be scanned and tested for vulnerabilities.

The first part of this chapter focused on the container basics, mainly its kernel modules, by presenting
and briefly indicating the potential threat sources that could emanate from each one of them. Our
work will focus on the first part of this chapter, by scanning the container and searching discrepancies
by comparing the container to a default configuration baseline. As we explained within each Kernel
module category, each of those modules have weaknesses that can be introduced quickly by a container
administrator simply by changing an option at runtime.

The second part of this chapter focused on the specificities that can be found in the industry, mainly
the different parts present in a container platform. This part explained the different runtimes programs
that could be found on the market, as well as the most popular ones.

Théo Pirkl 45



Tesseract : a proposal for a container breakout tool January 2024

This chapter concluded by showing the different tools at everyone’s disposal to orchestrate more
complex infrastructures with orchestrators, and underlining the additional notions required to run a
cluster.
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4 Automated Exploration

4.1 Introduction

Automated exploration refers to the automatic collection of data for later use. This process is used in
many different scenarios, for instance collecting performance data in datacenters [91] to avoid the
manual collection of data. In our work, automated exploration focuses on finding plausible information
to determine the environment the container is running in. This process is paramount for this tool to
work, as most attacks required to break out of a VM or container always require some form of known
information. The automatic exploration of a container should allow our tool to determine if any attacks
may allow to break out of the container.

Most information gathering about a container and its environment (its host, any neighbour, the con-
tainer engine, and so on) can be collected automatically, as informations are stored in most cases in
the same directories, files and structures regardless of the underlying Operating System (OS), as long
as it is a Linux kernel. For instance, reliably detecting if a process is inside of a Docker container can be
done by checking a couple of files and kernel structures [38].

As previously stated, containers do provide a layer of isolation in between the host and the guest
(here, the container), although not as strong as Virtual Machines (VMs). This can be exploited to
an attacker’s advantage to either gather information or to attack the host with a knowledge of the
current environment. As there are many ways to compromise a container, our tool should gather
as much data as possible, without arising suspicion, which means primarily using passive detection.
For instance, scanning the ports of a container might reveal useful information, but may also trigger
security mechanisms as port scanning is almost always considered as an attack.

Every bit of information is beneficial to an attacker as the isolation layer is usually considered as
insufficient [92]. Attackers do not have a single point of entry towards the host, as four categories of
attack vectors have been considered by security researchers [37] :

• Applications inside the container
• Inter-container protection,
• Protecting the host from containers
• Protecting containers from a malicious or semi-honest host
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This list suggest that not only the container as well as communications are at risk of being attacked. In
some cases which we will not study, the host might also be the attacker.

This chapter studies the information retrieval process of our tool to underline how much can be
retrieved and with what effort. In short, our tool tries to address the three following questions :

• In what environment is our tool working in (information gathering) ?
• What tools does the container have at its disposal (contextualisation) ?
• Can any of these tools be used to the tool’s advantage (attacks) ?

Each question will be described and answered in the following subchapters. Potential solutions will
then be presented in the following chapters.

4.2 Prerequisites

In order for our tool to run, several requirements must be met, as they are situated outside the field of
study of this work.

• The first one may seem obvious but is required in order to run : the operating system must run a
Linux Kernel. Microsoft Windows and Apple OS X are not supported, mainly because of the many
changes they’ve imposed on their OS and the compatibility issues this incurs.

• The second one is root permissions. As this tool nor this work focuses on privileges escalation,
the tool expects root privileges, but may be able in some cases to run without it. While most
vulnerability tests do not require root privileges, exploits attacking specific parts of the under-
lying OSs may require root access. This also removes permissions concerns in the container for
our tool, as this concern is outside the scope of this work.

4.3 Information gathering and OS exploration

There are many different ways to mine information in a container and its environment, as there is a
myriad of ways to analyze an OS. While this tool does not claim to offer a complete list, our tool should
provide enough tests to reasonably ensure that the results are not biased.

4.3.1 Informations about the container host

Most container engines reveal many details regarding the container host by default. This lets the
attacker know information about the host, such as the number of cores, their frequency, available
physical memory, and so on. Those informations are usually kept confidential from the public.
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This also allows to predict whether or not the container runs on enterprise-grade hardware as it is for
instance uncommon to see more than 64 Gigaoctets of physical memory in home computers, or by
looking at the model name of the host’s Central Processing Units (CPUs). The prediction, although
naive, can be done easily with a threshold of available resources, or by checking the CPU's model
against a list of processors found in enterprise environments such as Intel Xeon or AMD Epyc.

Apart from hardware, information about the container engine can also be detected. Container engines
tend to leave clues in the container , which helps to detect if the tool is running in a container, and if so,
with what container engine. For instance, Docker leaves a file at /.dockerenv for legacy purposes
[93], but this also lets an attacker know about the chosen container technology for potentially all
containers as well.

As containers do not provide enough isolation, it is also possible to determine where the container data
is stored on the host with mount. This can become a problem if a breakout of the container succeeds,
as a path for a valid program is now known. An attacker would then be able to call programs from the
container but on the host, compromising the host (with, for instance, a reverse shell).

4.3.2 Informations about other neighbours

Information about other neighbours can be collected as well : Address Resolution Protocol (ARP) can
be checked by our tool to see which container exists in the neighbourhood of the container. This gives
our tool the ability not only to know what containers are reachable, but it may also give us a clue of
their use, as it is common practice to name the container as the main service running inside of it. For
instance, a container named nginxwill most probably run the nginxweb server. Container names
may be collected by running a reverse Domain Name System (DNS) query to the container internal
DNS as long as one exists, which is in most cases left on.
The ARP table may also contain information about container networks, the MAC address or the name
of the container host. In specific cases, such as linking the container directly to the host network, other
physical devices may be seen in the ARP table.
Using the ARP table also removes the need to scan the network for hosts as the ARP protocol is handled
either by the OS or by services running on the container. Only DNS packets are sent to the internal DNS
container server, which is generally unmonitored; moreover, even if the DNS server was monitored, only
legitimate requests are sent towards the server, and only a slight increase in the amount of requests
sent by the container (one per found neighbour) sent may draw attention.

In a similar way than with hardware, it is possible to predict whether or not a neighbour is a container
based on its Media Access Control (MAC) address. Container engines will in most cases generate a
Organizationally Unique Identifier (OUI) nonexistent prefix. This behaviour can be detected simply
by checking if the OUI matches a container prefix group. Other MAC addresses can be considered as
external devices linked to the container networks.
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4.3.3 Informations about the container itself

So far, information the tool collected were about devices other than the container (the host, neighbours
and other physical devices). Naturally, as the tool has access to at least a container (that is, the container
in which it is running), it is also possible to collect information about it.

Many information about the running container can be collected, such as the running services, the OS,
and any file contained by the container. Files that may help our tool to break out are files owned by the
container’s host, and shared by a volume. As volumes are shared by the mount namespace, it is easy to
detect which exposed volume contains patterns of sensitive files, such as the container control socket
or the host’s system files. Our tool can therefore list the mounts of a container and then check which
ones match a specific signature (for instance, whether system files are present). This allows to quickly
find sensitive files. This method can also be used to find information about the host, for instance what
services are running based on the files the container shares with the host.

Information previously collected about other containers may also give hints on the use of the container
itself. For instance, web servers usually have two network interfaces, one leading to the container
host and the other connecting other containers that are not exposed to the outside. The number of
interfaces of a container may therefore lead an analyst towards certain conclusions.

Important information about the host can also be found in /dev. As this repository contains devices
connected to the container, it also allows our tool to find devices connected to the host, such as Graphics
Processing Units (GPUs), hard drives, and so on. Any exposed devices represent an opportunity to
test breakout techniques, and although not all of them can be implemented in this work, this still
represents valuable information for the analyst using this tool.

There are dozens if not hundreds other collection points, each giving valuable information about the
host, the container, the security behind it, the networking, and so on. Most if not all information can
usually be found in /proc or /sys, as they represent the kernel data structures. As this tool expects
to be run as root, collection from all data points is trivial.

4.3.4 A note on determinism

All containers are different from another, and many security practices exist. Given the near-infinite
permutation of settings and possibilities in a container engine let alone the host’s OS, this tool cannot
predict with absolute certainty what a container does or its weaknesses, features, neighbours and so
on. Moreover, an evaluation is only valid at the time of execution, as resources not used at the time of
evaluation can start being used at a later time, for example, and this would result in our tool not seeing
specific information.

Given the multitude of environments and events a container may encounter, errors may occur in
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some cases, which could cause our tool to crash. This is linked to the large variety of containers, OSs
and settings. While it is normal not to be able to handle every occurring error (as most will raise at
runtime and not during compilation), this is unacceptable behaviour. All tests must therefore be able
to handle errors in a way that if the test fails because of an error, the test is skipped. This may reduce
the overall certainty of the tool at the end but this also allows tests to continue rather than crash the
tool altogether.

Our tool should be deterministic as it should give the exact same result when ran on two exact copies
of an infrastructure. However, many external factors may influence the result of the tests. For instance,
if the internal container DNS server is unavailable, the results may be drastically different from one
analysis to another, even when ran on exact replicas of a container infrastructure. This does not mean
our tool gives random results, but rather than results will ultimately need to be studied by an analyst
to be of actual use.

4.3.5 Container environment scoring

As described before, all containers vary in many ways from one another. However, most information
required to understand the environment of a specific container are constant, and change only if the
container is re-instantiated. It is therefore possible to run a set of tests to give an environment prediction
score. This prediction score can be interpreted as a certainty score, which becomes useful for an analyst
to quickly understand what is certain and what is conjecture. Each test will return a score between 0
and 10, where 10 is the strongest certainty and 0 is the least amount of certainty. The certainty score
for each test will indicate with how much certainty the test result can be trusted.

For instance, detecting if a container is running with Docker can be detected with the /.dockerenv
file, as mentioned before. While this usually means that the container is indeed running with Docker,
any user or service could have created that file. Therefore, this test cannot receive a 10/10 certainty
score.

Only very specific tests will therefore be able to give a 10/10 certainty score. This will ensure that a
quick test is never as valuable as one that will account for complexities.

4.3.6 Environment collection process

As previously mentioned, it is impossible to predict on which environment our tool will be ran on. This
means we must consider that no tools are at our disposal. For instance, lsblk, mount or other tools
commonly present in a Linux system must be considered absent, as some containers may work with
only required tools, with very light containers such as alpine or busybox. Most of our information
must therefore come directly from the kernel, or from tools that can be included in ours in order for the
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container to work. Networking tasks are not impacted by this as we consider that all containers have a
properly working networking stack since a container is of little use without one. However, handling
information such as mount points, namespaces, and so on gets trickier without tools.

This in turn means that our tool cannot rely on much and that our work must implement some mecha-
nisms itself in order to work properly. For instance, as our tool is developed in Rust, crates (modules
distributed by the community and third parties) may not be used in some cases, as those crates will
simply run a tool considered to be installed. This works as long as the tool is present, but as we assessed
previously we cannot rely on this fact. For instance, a crate designed to list the networking neighbours
may rely on the ip command, which is not always installed.
Furthermore, crates may have undetermined behaviour, either malicious or not, which could broaden
our tool signature, effectively allowing security tools to detect the presence of our tool more easily.

Moreover, most of the data required for our tool to run can be found in the /proc filesystem. We can
find information about Linux capabilities, ARP Tables, mount information and much more. As this
filesystem is always present, we may rely on it to obtain key information about the container. This does
mean that information must be processed in order to understand it, as kernel structures are never
presented in a serialized format such as JavaScript Object Notation (JSON).

A subset of the information collected by our process is shown on figure 4.1. Many data collection points
are taken into account, and each one is then converted to an interpretable format. All information
are then collected into a test set : this set allows our tool to determine the environment in which it is
running. The test set first tries to determine the container engine currently running. Relevant tests
are grouped together by category and evaluated. As each test returns a score from 0 to 10, the test
group with the biggest score is deemed the most correct. A certainty percentage is then computed by
using the total number of points from the sum of the certainty scores from each test, divided by the
maximum number of points from each test group. Once the container environment is guessed, the
host hardware is evaluated, collecting the number of cores on the CPU, the amount of Random Access
Memory (RAM), the number of Network Interface Cards (NICs), and other information about the host,
such as the mount point of the container on the container host.
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Figure 4.1: Collection process

As mentioned, the collected information will be used for attacks later on, which means all data must
be checked and refined so there is no doubt about their accuracy. For instance, attacks targeting the
Docker socket will not work with Podman, as Podman has a different socket.

Once complete, all information are grouped into a host class, containing the gathered and extrapolated
information. This will be used later on by the security tests to determine the overall security of the
container.

4.4 Contextualization

As previously discussed, many information can be extracted from a container, data that can be useful
to direct an attacker towards potential weaknesses. In this work, exploits allowing breakouts are
considered as information and must therefore be tested. As one of the goals of this tool is to guide
analysts to harden containers, exploits considered as dangerous for the host or the container will not
be implemented. For instance, exploits using hardware (such as Peripheral Component Interconnect
(PCI) cards) with faulty instructions are considered dangerous as it may accelerate the deterioration of
the hardware, which may in turn cause failures with actual physical consequences. Alternatively, using
Kernel structures to break out of a container is considered acceptable, as long as there are no risks of
crashing the Kernel in itself.

Once the environment collection process is over, the actual exploitation of data is the logical next step.
In order to avoid attacking the container blindly, our work proposes a contextualization system, which
routes any gathered information to the proper breakout test. This allows the tool to focus on areas
where there is plausible information that weaknesses exist, and ignore areas where confidence is low
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or nonexistent. For instance, there is little sense trying to break out of a container by trying to exploit a
peripheral, if there are none mounted on the container.

Contextualization must therefore rely heavily on the information gathering process described earlier.
Only a collection of useful, correct data may assist the contextualization engine into fulfilling its mission.
In order to route the collected information towards the proper breakout test, each test collecting some
context will be categorized in at least one category. Then, only categories exceeding a fixed threshold
will be run. Theoretically speaking, our work should not try to break out of the container via a peripheral
if no tests support the possibility of breaking out via this peripheral. Contexts tests are different from
environmental tests as they do not possess a score but a pass/fail system : tests pass when the default
setting is detected and they fail when a setting has been altered from the default value. For instance, a
test checking exposed devices will fail when a GPU is exposed to a container.

Breakout tests are run depending on the
collected context

Information about the container and
its surroundings are collected and sent for

contextualization

Test 1 : Disks
Category : sensible mounts

Test 2 : networking, neighbours
Categories : weak networking

Test 3 : mounts
Category : sensible mounts

Test results are sent
to the contextualization

engine

Tests results are distributed according
to their category

Category : sensible mounts

Category : weak networking

Category : configuration issues

Tests related to sensible mounts

Tests related to weak networking

Tests related to configuration
issues

Figure 4.2: Contextualization engine

This process is shown in figure 4.2. It is important to note that the contextualisation process is predictive,
like the information gathering process. In some cases, the information extracted from the context is
closer to an extrapolation, and just because the contextualisation engine is based on several dozen
tests does not necessarily mean that there is a weakness in the container. This is where attacks will
check if the container is at-risk or not.

Some edge cases are to be considered : for instance, if the collection process fails, all categories from
the engine will be considered empty, and no context can be extracted from the container. In this
particular case, it is either possible to run all breakout tests or to stop the tool altogether. The latter has
been chosen, mostly because running all tests would certainly be noticeable or could in some cases
damage either the container, the kernel or underlying hardware.

The contextualization engine serves two purposes : the first, described before, serves the tool to orient
itself in order to test breakouts on specific detected, vulnerable spots. The second is dedicated for the
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analyst : a thorough report generated by this engine allows the analyst not only to see where most
vulnerabilities were found, but also where they were not. This is valuable for the analyst, as this allows
to see where the container may have been hardened, and where it was not.

An example of contextualization is the readings of /proc to compare the capabilities our tool has at
its disposal. A test is run depending on the container engine, as capabilities change depending on
the engine. If the gathered capabilities are not equal to the expected capabilities, the context test
fails, which increases the CAPABILITIES category in the context engine. If the context engine has
sufficient tests that have failed, all attacks regarding excessive capabilities will then be launched.

Once the context engine is loaded and populated, attacks can now proceed.

4.5 Attacks

This subchapter will focus on the attack process in its theoretical form.

4.5.1 Attack process

The attack process refers to all trials that may allow our tool to break out of the container and effectively
access the host resources, including but not limited to other containers.

All attacks are executed similarly. Before the attack is launched, checks are made to ensure that the
minimal criteria are met. Once this first phase, called basic requirements is done, advanced requirements
are checked, checks that are too specific for the context engine to be registered, but need to be checked
: as a reminder, the context engine is only there to register discrepancies and to allow specific categories
of attack to run. Specificities are not registered by the context engine, which is why two phases are
required.

Once the advanced requirements have been checked and met, the attack can proceed. The actual attack
may depend on existing tools, such as shell code, or other executables. To avoid downloading files,
which is usually the first step of a malware attack, files are byte-included into our tool’s executable.
While this makes our tool heavier, it also removes the requirement for networking and compiling
files directly in the container (which could also trigger security mechanisms). In some cases, it also
allows us to statically compile C files, removing the need for libc libraries and hence ensuring a wide
compatibility over containers, regardless of the environment.

In cases where the attack depends on files, files are dropped from our tool’s executable to the disk.
To ensure compatibility, the files are written either to /root or to /tmp. Although unlikely, in cases
where this is not possible, the attack is skipped. Finally, the attack is executed (either with the help of
the dropped files, or without files if the attack does not have any file requirements).
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To ensure the attack has succeeded, final checks are done to ensure breakout has properly occurred. For
this, the /etc/passwd file is recovered from the host, as this will ensure the breakout succeeds with
both Docker and Podman, since Podman containers are typically run as unprivileged users. Fetching
/etc/shadow would therefore not work, even if the breakout succeeded.

If the attack has succeeded, a security score is returned, the values of which are described in the next
subchapter. A security score can also be the None value, returned if the attack has not succeeded or if
the prerequisites are not met.

The attack process is shown on figure 4.3. This process, although simple, should allow extensibility for
new attacks as requirements, regardless of what they are, should be able to be integrated easily.

Start
YESAre the basic

requirements met ?

YESAre the advanced
requirements met ?

Attack is launched
1.) Files are dropped
2.) Attack is executed

YESHas the attack
succeeded ?

A security score is
returned

The None security
score is returned

NONONO

Figure 4.3: Coarse diagram of the attack process

4.5.2 Attack scoring

Each attack will then return a security score. In order to limit the number of possible results, a scale
must be chosen. Common scores to measure the degree of vulnerability already exist. According to the
Common Vulnerability Scoring System (CVSS) website, their scoring system “provides a way to capture
the principal characteristics of a vulnerability and produce a numerical score reflecting its severity.
The numerical score can then be translated into a qualitative representation (such as low, medium,
high, and critical) to help organizations properly assess and prioritize their vulnerability management
processes.” [94].

While this score may be of use, this score is supposed to highlight the criticality of a vulnerability in
software. Our tool does not find vulnerabilities in software stricto sensu, as it mostly finds weaknesses
due to bad configuration. It would be therefore incorrect and potentially unsanctioned to use the CVSS
score for our needs.

Other tools used by scanners in other domains, such as the SonarQube© for static code analysis use
a score derived from the academic grading in the United States, starting from A (the best grade) and
ending at F (the worst grade). The grade E, precisely as in the United States grading system, has no
value.

Even if the SonarQube has nothing to do with our work, this grading system seems adequate, as it
provides enough possibilities to let an analyst know how critical a problem is. Our tool will therefore
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output a grade based on the US Academic grading system, where grades represent the security score
of a container. A container with grading F should be considered compromised, where A shows an
adequate level of isolation between the host and the container to resist trivial attacks. It is important
to remember that this grade will only consider specific factors implemented in the tool and that
weaknesses that are not observed by the tool will not influence the grade. Many factors may be taken
into account for this grade. However, all criteria must be related to the current container infrastructure.
For instance, a breakout may be considered as the grade of F, but blatant security issues on the host
that cannot be exploited from the container will not change the grade at all, as they do not reach the
scope of this tool or its container grading system.

Each grade can be matched to an explanation as shown by table 4.1.

Table 4.1:Mapping of grades to a human description

Grade Explanation

A No misconfigurations were found within the
container. No breakout of any form have been
found, and no additional information about the
host were found.

B Additional information about the host were
found. This may lead to further problems but
automated attacks will likely not be able to push
the issue further.

C Information regarding the container suggests that
a breakout may be possible with additional
dependencies. The isolation layer of the
container is thin and may break.

D Misconfigurations that would allow a breakout
have been found with the container, but
automated attacks have not been successful.
Manual attacks would very likely succeed.

F Misconfigurations have been found within the
container, and at least one breakout has
succeeded with this container. Both the container
and the host are compromised.
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4.5.3 Available attacks

Given the many tools at our disposal on the Internet, there is a literal arsenal of available attacks, from
Common Vulnerabilities and Exposuress (CVEs) to trivial breakouts. We have decided to implement
three trivial attacks in our tool, that are the following :

• Excessive capabilities, withCAP_SYS_ADMIN,CAP_DAC_READ_SEARCH,CAP_DAC_OVERRIDE
, CAP_SYS_MODULE, allowing automated breakouts or little additional requirements to
breakouts

• Privileged container breakouts with --privileged, that allows an immediate breakout over
the host as privileged containers are not containers

• Sensitive mounts, such as /run/docker.sock, that allow automatic complete control over
the host

As capabilities and privileged containers, as well as volumes are amongst the most commonly used
settings with containers, attacks relying on those mechanisms seemed logical to implement. Moreover,
those settings are supported by an enormous variety of container engines. This would therefore allow
to port those attacks on different container engines with little to no effort.

4.6 Strong points and pitfalls

This tool does present interesting features that may be considered as appealing to the analyst, but
some others may be considered hindering or even missing from the tool.

As previously discussed, a hard requirement for this tool is the /proc filesystem, as there are many
exploitable data available that can be used to our advantage. Instead of using external dependencies,
the tool can access /proc directly. Therefore, much of the parsing and processing are handled
internally. The main advantage of using a minimum of external dependencies is that there are very few
limitations with this way of proceeding, as opposed to using a third-party crate, as a crate may not
implement what our work is after or cause unforeseen side effects.

Most of the tool’s requirements need to be included inside of the final binary, as this tool cannot
guarantee components, libraries, executables or other requirements for this tool to work to be present
on the container. It is an advantage to be able to run on most likely any OS, but this does mean a binary
executable of a significant size. As of this writing, the file is about a few dozen megabytes, which is
relatively large for a tool of this size. It also means that complex tools requiring several libraries may not
be included and may need to either be compiled “on-site” (that is, in the container) or downloaded from
the Internet. Either way, this would surely be flagged by security installations as malicious activities.
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Another pitfall of this tool that will come as no surprise is that the tool only tests what it was programmed
to. This means that new weaknesses will not be detected if is not kept up to date. It also means that in
some cases, detection may fail to detect weaknesses and mark the container as “safe”. Inherently, this
causes this tool to be vulnerable to the test of time.

In fact, most tools that were previously listed can find the same information. However, as of this writing,
none of them have any significant contextual engine, nor do they have a detection system that works
inside the container like ours. Most container security tools, such as Falco or Docker Security Bench,
work from outside the container, which gives them a significant advantage over ours. Our tool, while
disposing of less information, is still able to conduct attacks based on data and extrapolation. We do
not comment on the results which will be discussed in the next chapter, but we are able to achieve
what other tools do, only with less information.

The implementation of attacks may be considered bare, as many other attacks, including trivial ones,
do exist. However, as our goal is not to provide every single attack but rather to assess how much
effort is required to break out of containers. As the aforementioned attacks are trivial, it is certain that
attackers will implement attacks that can be considered more complex. If our tool manages to break
out of containers using trivial attacks, there is an enormous risk for other containers to be broken out
by determined attackers. Implemented attacks may be considered meager in number, but they do
concentrate on the most commonly used settings, and those attacks have yet to prove their efficency,
which will be done in chapter 5.
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5 Audit on sample infrastructures

In order for our tool to be evaluated, several infrastructures are hereby proposed. Each one possesses a
different level of security, from one oblivious to it to another with default permissions. Infrastructures
should be as generic and inspired by public repositories as possible. This would allow a proper
comparison between existing infrastructures and the one in our simulation environment.

There are several goals of auditing sample infrastructures :

• The first one is to see how much data can be gathered;
• The second one is to see what can be done with the collected data;
• The third one is to determine what can be done to mitigate the detected risks.

Sample infrastructures will be run on several container engines. While it is impossible to predict
whether a container engine will reveal more information than another, it is quite possible to detect
whether our tool is engine-agnostic or favouring a specific container tool. Comparing the results of the
two container engines will allow us to answer this question.

5.1 Infrastructures

This subchapter will list different infrastructures. For each container, a report will be generated and
analyzed.

For each infrastructure, a short description of what it does will be given, along with a figure to show
the different containers and networks of the infrastructure. As all containers are interconnected in a
network, connections between containers of the same network are not shown.

5.1.1 Basic website

This infrastructure contains three different containers, as shown in figure 5.1.

• One handles incoming and outgoing traffic with a nginx container; This container hosts PHP
files for a web app.
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• The second runs a php:8.2 server to handle the processing of PHP files sent by the nginx
container.

• The third and last container handles all database-related jobs by running a mysql container.

Container space

Host nginx

mysql

php:8.2

Figure 5.1: Basic website infrastructure

A likely scenario for an attacker is to compromise either thephp:8.2 or thenginx containers, as they
are the ones processing information coming from the outside. This does include malicious payloads
such as SQL injections, Cross-Site Scripting, and so on. The nginx container runs with two NICs : one
for the container network and another connected to the host.

Only two ports are exposed : Transmission Control Protocol (TCP)/80 and TCP/443.

5.1.2 Basic website with login

This infrastructure is almost the same as the previous one. Instead of allowing users to connect directly
to the website, an Identity Provider (IdP) is instantiated. All unauthenticated requests will be redirected
to the IdP for authentication and authorization. The IdP runs on Authentik, which already provides
containers for its infrastructure. The containers will be included with this infrastructure’s containers
without any changes. The infrastructure of the website is shown on figure 5.2.
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Network – blog

mysql

php:8.2

Network – authentik

PostgreSQL

Redis

Authentik-server

Authentik-worker

Network – web

Host nginx

Figure 5.2: Basic website with login

This time, an attacker will have more trouble attacking the web app as it is protected by a login system.
Therefore, containers that are likely to be attacked are the nginx and the authentik-server,
both responsible for the login and dispatch of traffic to the IdP and web app. It is interesting to note the
position of the nginx container, both in the blog and the authentik network as well as connected
to the host. Should this host be compromised, all three networks would be impacted.

5.1.3 Storagemonitoring system

In many datacenters, it is paramount to check whether or not the drives responsible for the storage
of data are in good health, as all components have variable durability. The Self-Monitoring, Analysis,
and Reporting Technology (SMART) technology allows system administrators to monitor and replace
hard drives before they fail. In many cases, SMART data are not collected, which leaves hard drives
unattended and unmonitored until failure. Thescrutiny container [95] allows system administrators
not only to monitor drives, but also to receive alerts on many different channels to ensure proper alert
delivery and response. The infrastructure, which consists of this the scrutiny container, is shown
on figure 5.4.
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Network – scrutiny

Host scrutiny

Figure 5.3: Basic monitoring infrastructure

In this case, TCP ports 8080 and 8086 are opened. The container should be able to handle hard drives
and Solid State Drives (SSDs) of all sorts.

5.1.4 VPN Infrastructure

This infrastructure is an addition of the first one, as one more container is added to the container
network. The container in question is a wireguard server allowing users to connect remotely by a
Virtual Private Network (VPN) to the infrastructure. The nginx server is therefore unlinked to the
host’s network as only the VPN requires an outside connection. This does provide an additional layer
of security from the perspective of the app, as vulnerabilities linked to the web application may only
be tested if the attacker has access to the web app from the VPN. The modified infrastructure is shown
on figure 5.3.

Container space

Host nginx

mysql

php:8.2

Wireguard

Figure 5.4: Basic website with VPN
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Only port User Datagram Protocol (UDP)/12321 and TCP/80 are opened.

An attacker would have no choice but to attack thewireguard container as nothing else is exposed.

5.2 Testing protocol

In order to run our tool on several different container engines, Docker compose has been chosen, as it
is a very popular container description format, and Podman can also use it.

All infrastructures will be run on the same host with the following hardware :

• Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz (12 cores, 24 threads)
• 32 Go of RAM
• 6 To of storage

To avoid any other service disruption, all infrastructures will be run in a VM, with the following specifi-
cations :

• 4 Cores
• 8 Go of RAM
• 32 Go of storage

The VM will run on the host’s network, but the containers will remain in their own namespace. To
further ensure no side effects can occur, all previously described infrastructures will be ran in turn.

Finally, all containers in a given infrastructure will each run our tool, which will produce an HTML file
containing the results of the analysis of the container it ran on, as well as a log file and a score. The
HTML file, with the log and the score, will be kept for later analysis. All scores will initially start with the
grade of A. Each test will have the ability to return a lower grade or to return no grade at all, which will
allow tests that cannot run due to unfulfilled prerequisites to not pollute the overall grade.
The overall grade will reflect the worst grade obtained.

Once all containers in an infrastructure have executed the tool and that viable results have been
extracted, the infrastructure is stopped. Once all infrastructures have been tested, the next container
engine starts each infrastructure, repeating this testing procedure.

As of this writing, only two container engines are supported :

• Docker. For this tool, our containers will be run as root, as rootless containers are still experi-
mental with Docker.

• Podman. For this tool, our containers will be run as the user labo, as Podman natively supports
rootless containers.
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5.3 Results

5.3.1 Basic website

5.3.1.1 Docker

Table 5.1: Results of Tesseract on the simple-website Docker infrastructure

name grade

sw-nginx A

sw-php A

sw-mysql A

The overall grade of this infrastructure is A. This is mostly because there is no particular configuration
allowing any breakouts : only required files are passed to the container, no extra capabilities are given,
no devices are exposed, and so on. Using common parameters to run containers seem to guarantee a
certain level of security from our tool’s perspective.

5.3.1.2 Podman

Table 5.2: Results of Tesseract on the simple-website Podman infrastructure

name grade

sw-nginx A

sw-php A

sw-mysql A

The overall grade of this infrastructure is A. As explained in the Docker test, there is no particular exotic
configuration that would allow an attacker to break out of the container. The grade is consistent with
the Docker measurement.
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5.3.2 Basic website with login

5.3.2.1 Docker

Table 5.3: Results of Tesseract on the simple-website-login Docker infrastructure

name grade

swl-nginx A

swl-php A

swl-mysql A

postgresql A

redis A

authentik-server A

authentik-worker F

The overall grade of this infrastructure is F. This is due to the added complexity of the authentication
server, asking the Docker socket to be exposed in the default configuration. While this is optional,
it can be quickly disregarded by users as the configuration file is long, complex, and may throw off
users unaware of the consequences of doing so. In this case, showing the Docker sock renders the
authentik-worker container very dangerous, as this container could take control of the host if it was
compromised.

5.3.2.2 Podman

Table 5.4: Results of Tesseract on the simple-website-login Podman infrastructure

name grade

swl-nginx A

swl-php A

swl-mysql A

postgresql A
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name grade

redis A

authentik-server A

authentik-worker D

The overall grade of this infrastructure is D. However, after taking a closer look in the logs, our tool
was not able to access the /var/run/docker.sock file, as all containers are run as a standard
user. Once in the container, the user running tesseract (typically root) tries to access the /var/run
/docker.sock, however, the access is denied, as the file comes outside the container and a default
setting from Podman restricts the access to the file. The proper overall grade is therefore C : should
the container suddenly get access to the docker.sock file (which should not have been given in the
first place, as it is a remnant of the Docker configuration left on purpose for this example), a breakout
would surely occur. This grade is not consistent with the last experimentation, as Podman runs without
root privileges.

5.3.3 Storagemonitoring system

5.3.3.1 Docker

Table 5.5: Results of Tesseract on the scrutiny Docker infrastructure

name grade

scrutiny D

The overall grade of this infrastructure is D. This grade is given because the package gives the
SYS_ADMIN capabilities to the scrutiny container, as the Linux Kernel requires at this time of writing
this capability to read SSD drives, especially Non Volatile Memory Express (NVME). This may be used for
many different tasks, including mounting the drives and reading their data, but SecComp blocks this
from happening. An experienced attacker may cause other problems as the SYS_ADMIN capability
may cause much damage, for instance “perform various privileged filesystem operations” [71].

5.3.3.2 Podman

Théo Pirkl 67



Tesseract : a proposal for a container breakout tool January 2024

Table 5.6: Results of Tesseract on the scrutiny Podman infrastructure

name grade

scrutiny D

The overall grade of this infrastructure is D. As described in the Docker experimentation, our tool finds
that the container gets the SYS_ADMIN capability, effectively stripping the isolation layer. The grade
is consistent with the last experiment.

5.3.4 VPN Infrastructure

5.3.4.1 Docker

Table 5.7: Results of Tesseract on the vpn Docker infrastructure

name grade

vpn-nginx A

vpn-php A

vpn-mysql A

vpn-wireguard D

The overall grade of this infrastructure is D. This is due to the additional capability required by WireGuard.
This capability allows an attacker to mount Kernel modules directly on the host, effectively running
arbitrary code with total access privileges. As described before, the grade D is given when an attack
cannot be done automatically, but the grade is very close to an F, as the only requirement to breakout
is that the host has installed common packages required to compile kernel modules (known as the
Linux header packages). Technically speaking, this may be debated to be grade C, but the only thing an
attacker has to do is to persist a connection to this container and wait for packages to be installed.

Additionally, an attacker able to compromise thevpn container of this infrastructure has compromised
the infrastructure as a whole, as all incoming and outgoing messages can now be captured and modified
on the go.

Théo Pirkl 68



Tesseract : a proposal for a container breakout tool January 2024

5.3.4.2 Podman

Table 5.8: Results of Tesseract on the vpn Podman infrastructure

name grade

vpn-nginx A

vpn-php A

vpn-mysql A

vpn-wireguard D

The overall result of this infrastructure is D. As described in the Docker experimentation, this is because
of the additional capabilities given. The attacker simply has to wait for those packages to be installed.
All observations made for Docker are valid for this experiment, and results are consistent with the
Docker experiment as well.

5.4 Analysis of results

5.4.1 Docker

As in many themes, security can be kept in mind with simple infrastructure, such as the simple-
website one. However, adding layers of other software onto an infrastructure may compromise the
overall security of the containers and the host. For instance, trying to put Wireguard in a container may
be considered worse than one directly on the host, as running a container WireGuard is the equivalent
of running Wireguard as root, with access to the kernel modules directly from the container.

Docker provides a baseline in regard to its many settings : without proper knowledge, those settings
should be left as-is. In fact, many of these settings (exposing devices, volumes, and so on) may lead
to a breakout if not understood properly. In the four infrastructures presented above, three were
compromised, with one remaining with acceptable levels of isolation.

It is important to remember that containers were taken verbatim from documentation, and that nothing
was changed. Containers used for all measurements have been, at this time of writing, downloaded
at least 1 million times, with most images downloaded at least 10 million times. Containers running
with a risky configuration can be considered common, as most users will use the default configuration
provided by the container third-party. Moreover, implemented attacks in our work are trivial and can
be considered without doubt to be used by attackers, either manually or with scripts.
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Furthermore, as containers are mostly used to deploy web applications [96] [9] and that they are in
most cases exposed to the internet, exposing a flawed container directly to the Internet can be done
accidentally or not in a matter of seconds. As all experts will agree, exposing a service to the World
Wide Web (WWW) will very quickly result in scanners, botnets, and attackers of all sorts to scan the
service. It is therefore only a matter of time before the service is compromised, and with it, the host.

As previously mentioned, Docker works by running containers with a daemon, hence containers are
run as root. If an attacker breaks out of the container, root access is also obtained. It is estimated
that 83% of containers run as root[9]. Security organizations comment on this number :

“[. . . ] Even if risky configurations are detected at runtime, teams do not stop these containers as
they do not want to slow their deployment. Instead, they run within a grace period and then decide
on the remediation step. Although some containers require this level of privilege to perform their
intended function, this number is shockingly high and the trend is going in the wrong direction.”

While mature ecosystems such as Cloud Service Providers (CSPs) seem to adopt security tools to ensure
the overall security of their platform [9], nothing can be said about smaller enterprises hosting their
container infrastructure on-site. For instance, Amazon implemented Firecracker, Google is using gVisor,
IBM is using Nabla, and so on.

It is therefore a critical issue to review all Docker containers both before and at runtime, to ensure the
permissions granted do not exceed security guidelines or what is actually required in order for the
container to work.

5.4.2 Podman

Podman results are generally consistent with Docker : three out of four infrastructures were deemed
misconfigured with a significant risk of breakout. However, key differences may have allowed this
score to be enhanced even more. For instance, as discussed previously, Podman is a rootless container
engine, the opposite of what does Docker. Running containers as a simple user would slow down
an attack considerably. The attack surface could be compartmentalized by using different accounts
for each container “group” : for instance, containers running a media server would run under the
mediaserver Linux user.

Therefore, if a breakout occurs, the host would still be considered compromised, but other containers
may be still be isolated from the attack.

While Podman is not the most used container engine, given 83% containers are run as root [9] it is
reasonable to assume some of the Podman containers may be run as root.

If transitions from Docker to Podman are made with Podman specificities in mind, Podman may be a
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viable solution to enhance the security of containers. Breakouts would still be likely, but would not
render the whole host or network compromised at once.

5.4.3 Overall results

First and foremost, it is important to remember that as soon as one container is compromised, the
others may be considered compromised as well. The host, on the other hand, may also be impacted
partly or completely, mostly depending on the container engine used.

Results show that even default configurations can lead to insecure scenarios. The fact that the results
for Docker are close to the ones for Podman suggests that the problem is not with a container tool, it is
with container themselves. Only slight changes in the default setting may allow a breakout.

Only trivial attacks were implemented in our work : however, it was still possible to break out of
containers even with the default configuration provided by the third-party. Advanced attacks are
available for an attacker, such as SPECTRE and MELTDOWN, were not implemented. It is certain that
those attacks are tested in the wild as well. With very little effort, our results already show what can be
achieved directly from the inside of the container.

Furthermore, our examples were considering there is no orchestrator such as Kubernetes, and all
containers were working on a single host. This may not be true in many cases, but to the best of our
knowledge, there is no additional security mechanisms in Kubernetes that may prevent a breakout.
Orchestrators on multiple hosts may instead be seen as a ramp for lateral movement, and further
compromise of the network, as additional services present in orchestrators may alter the attack surface
of the infrastructure.

Moreover, as tools warning of such security problems are all opt-in and none are enforced, unless using
opt-in container infrastructures such as AWS or Microsoft Azure, it is our belief that there is a generalized
risk with containers and their permissions. As most security experts will agree (as well as publications
[9]), organizations are success-driven, which encourages Minimal Viable Products (MVPs). In many
cases, containers that work but are not fully prepared to meet security expectations are published.
This introduces many security problems, including but not limited to secrets leaking [5], excessive
rights and capabilities to a container.

It would be foolish to expect processes to change. However, it may be more reasonable to introduce
process pipelines for containers, the likes of which exist for software. Pipelines would include peer
review, security scans, which could participate in the reduction of intrusion in containers at runtime. As
mentioned before, there is a trend towards running containers as root : if containers are not migrated
to rootless container tools such as Podman, it seems imperative for container administrators to avoid
misuse, intrusions and damages.
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5.5 In the wild considerations

Attacks in the wild, that is attacks on machines found on the Internet by attackers, may find two
categories of infrastructures:

• Private infrastructures, such as personal computers, homelabs, and so on;
• Shared infrastructures, such as CSPs or general datacenters.

In the second case, damages caused by a single breakout may span out of control rather quickly. For
instance, a breakout in a CSP datacenter may allow an attacker not only to compromise a full container
infrastructure, but also the host, and even in some cases (for example, when no isolation methods
have been taken before) impact other tenants running on the same host. Publications [6] suggested
that isolation methods between tenants are bare and perhaps insufficient, meaning that a breakout
could cause catastrophic damages to both the tenants and the tenant’s users. CSP.

Furthermore, many container providers seldom enforce security guidelines. For instance, at the time
of this writing, Amazon Web Services (AWS) provides written guidelines to protect containers from
specific attacks [97], but any user can choose to ignore those recommendations. AWS also provides a
specific service to avoid any co-residency attacks, but this service is opt-in and not as popular as AWS's
Elastic Container Service, and is pricier [98].

In our tests, infrastructures were kept at their simplest. In most enterprises, infrastructures can quickly
span hundreds or thousands of containers, thus rendering the monitoring of each container quite
complex. Furthermore, containers may, by design, disregard or overlook security features for many
reasons, accidental or not. In any case, adding containers on top of each other, such as in a microservice
architecture, makes it extremely complicated to monitor the network, each container’s dependencies,
security gaps, and so on. Moreover, containers are very rarely made by the company using them. For
instance, as mentioned in our automated exploration chapter, third-parties provide containers for many
services (web servers, databases, and so on), but it is unclear of their inner workings. This introduces
new security challenges.

The many security challenges at hand with containers cannot be ignored without a consequential
cost, even in development environments : it is therefore paramount that all actors using containers
establish proper security guidelines and apply them. Fortunately, instructions on how to harden a
container infrastructure exist and a few will be presented in the next chapter : mitigation. This chapter
will introduce elements on how to avoid trivial breakouts, thus keeping an acceptable level of security
throughout the container infrastructure.
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6 Mitigation

6.1 Introduction

So far, our work has presented the many ways an attacker has to break out of a container. In this chapter,
we will present techniques to mitigate those attacks, that is to render container attacks inefficient.
The goal of mitigation is to reduce the attack surface as much as possible without creating additional
misconfigurations, weaknesses or exploits along the way. This generally can be done by removing
features from the container, although it is not as simple as changing a few options. For instance,
removing capabilities from a container may seem at first like a good idea, but certain apps may depend
on them : removing capacities altogether may lead to service disruption.

The second goal of mitigation is therefore to keep the same set of features the container had before the
mitigation process without any impact to its features. This does not necessarily mean the container
should not be stopped : the second goal is not to ensure High Availability (HA) but to ensure that the
container works exactly like before, with little delays considered as acceptable.

This chapter will show existing container guidelines published by security firms or organisms worldwide.
The mitigations proposed by our tool should match what the guidelines suggest as both implement
container hardening.

We will then shift our focus on proposing a solution fulfilling both of the goals presented below : in
some cases, easy fixes can be applied, and in others, it may be more complex. In some others, it may
be impossible to harden the container enough for it to be resistant to breakouts. With the latter, other
considerations may be of use. This subchapter will then list the different mitigations there exists :
automatic mitigation and common mitigation techniques for problems that can be solved easily, long-
term mitigation techniques for security issues that may hard to fix, and considerations for containers
for unsolvable container issues.
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6.2 Existing security guidelines

6.2.1 National Institute of Standards and Technology (NIST) 800-190

The NIST created a special publication especially for containers [99] in publication 800-190, named
Application Container Security Guide. This publication, although extensive, lists countermeasures in
response to different major container risks. As this publication has security countermeasures well
outside our scope, we will only mention the ones relevant to our work.

• Separated inter-container network traffic : NIST recommends that apps are separated not by their
use, but by their sensitivity level. Separating the networks per-app is also a viable option.

• Mixing of workload sensitivity levels : NIST goes one step further by recommending that low
sensivity apps should not run on the same host than apps with high sensitivity. This is also valid
for different environments : production containers should be kept away from development ones.

• Vulnerabilities within the container software : the container runtime should always be kept up-to-
date, and monitored for CVEs.

• Unbounded network access from containers : containers on two levels of sensitivity should not be
able to send or receive network traffic from each other. This introduces many challenges as the
networking model in containers is fully software-defined, which may require virtual firewalls, as
well as additional considerations outside the supplied Software Defined Network (SDN) options
from the container engine.

• Insecure container runtime configurations : NIST recommends using tools to detect at-risk con-
figurations such as Docker benchmark [41], based on the Internet Security Docker Benchmark
[100]. It is noted that this process does not scale : and that organizations should “use tools or
processes that continuously assess configuration settings across the environment and actively
enforce them”, without mentioning a specific tool. Additionally, using tools such as AppArmor or
SELinux is recommended.

This norm goes far into securing the container host. Implementations of those rules that are correctly
applied should slow down a number of determined attackers in most scenarios. In those scenario, it is
unlikely that automated tools would work, as they would either find nothing out of the ordinary or
would be stopped by monitoring software.

6.2.2 Security Standard 011 - Containerization

The United Kingdom Department for Work & Pensions has deployed a number of standards that they,
as well as suppliers or contractors, must apply. SS-011 lists recommendations for containers [101] that
go in detail about the management, maintenance and handling of containers. Recommendations like
NIST are made, but some are either more underlined or not present in 800-190 :
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• PR.PT-3 mentions that system administrators must “apply the default deny rule to all container
capabilities, and only allow those capabilities needed through an explicit ‘Allow List’ ”.

• PR.DS-6 mentions that “Image registries must support signed images”. Furthermore, it is sug-
gested that container runtimes must be configured to enforce running signed images only.

• DE.CM-1 and DE.AE-1 also go as far as monitor resources for “unanticipated pikes in resource
usage” that could lead to the non-availability of critical resources.

This norm, although less known than NIST's standard, goes further into securing the containers.
Mentions of container designs, as well as orchestrators, are taken into account, hence seriously locking
down the container host.

The NIST standard was published in september 2017, and SS-011 was published in 2022. Both those
standards cover container breakouts at runtime, yet there still are breakouts that regularly happen.
Thus, we may reasonably believe that there are several countermeasures not being taken. For instance,
the Docker benchmark for Security [41] is a tool that is amongst the most starred repositories on
the Docker organization Github, but has yet little popularity compared to the tool. It is very likely
that NIST's recommendations are only taken into account by mature organizations, while smaller
organizations have a trimmed-down version of it.

6.3 Automatic and semi-automatic mitigation

Automatic mitigation refers to the fact that a mitigation can be applied automatically. In our case, this
is represented by a container that is at risk of being patched in a way that the risk is lessened or nulled.
Semi-automatic refers to the mitigation being recommended by a machine, but applied by a human.

While our work does not offer automatic mitigation, it can assist an analyst in removing potential
container risks that are trivial to solve. For instance, running a container in privileged mode is rarely
required : a mitigation would be to remove all capabilities and add them again depending on the
vendor’s documentation or logs.

Automatic mitigation is not black magic : at an abstract level, it analyzes “extraordinary” features seen
on a container, lists attacks that succeeded, and advises mitigation techniques. Most of them consist
of finding an alternative feature that is considered less insecure, or removing the container feature
altogether (such as removing the --privileged flag when not needed).

While automatic mitigation may be able to solve trivial issues, it may also lead to other problems. For
instance, automatic migration does not take into account the complexitity of the software installed in
the container. In some cases, it may lead to removing required capabilities and may therefore break
the app inside the container. In some others, the automatic mitigation may also introduce flaws in the
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container rather than harden it. For instance, the tool may remove sensitive files from the container,
but could expose others in the process.

This shows that mitigation of known problems is mostly a manual process and that it can only be done
by a person or a tool with proficient knowledge of the container, network and host. Security issues
are, as always, easy to create, but hard to solve. Automatic mitigation may be done for very trivial
tasks, but should be kept as a verbose option, and not as a tool that automatically applies mitigation
techniques. Tools able to mitigate problems automatically do exist [102] [103], but focus solely on
the detection and mitigation of a problem in known environments, while our work is designed to be
able to work on a container of unknown contents and environment. It can therefore be argued that in
our case, automatically applying mitigations without breaking the container is, in itself a work on its
own, as it would require understanding the context of each container in great lengths, so that applying
mitigations does not break the application inside.

In our case, and as of the time of this writing, it seems preferable to apply mitigations semi-
automatically, firstly to properly understand what a mitigation might mean, and secondly to avoid any
further service disruption.

6.4 Commonmitigation techniques

In this chapter, we define common mitigation techniques as mitigations that can be applied quickly and
easily. This does not take into account the complexity of the contained app, but those techniques do
not necessarily require extensive configuration updates, host reconfiguration or any process that can
take extended amounts of time. This chapter lists several of those techniques which will be developed
in this chapter.

6.4.1 Capabilities

In general, additional capabilities are a bad sign. While there are numerous good uses of granting
capabilities to a container, many derived uses may lead an attacker to a trivial breakout. It is usually
best to consider carefully when adding a capability, as the default ones are sufficient for most uses.
When adding a capability, avoid any CAP_SYS capability, as they will let an attacker access the host.
Additional capabilities do mean adding root privileges to a group of processes, and this should never
be done without a proper understanding of the consequences. The Linux Kernel documentation
provides a good oversight on what capability grants [71].

The best way of getting rid of this security issue is to remove capabilities when not required. For instance,
a wireguard container requiring CAP_SYS_MODULEwould be more secure if it was running on a
VM, or on an appliance. If moving the container is not possible, ensure the container is not accessible
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directly from the outside (that is, any traffic not coming from the container network). Otherwise,
apply strict firewall rules to ensure that only legitimate traffic is allowed. As NIST publication 800-190
recommended, isolation of such apps may be required.

6.4.2 Namespaces

All namespaces allow for proper isolation between the host and the container, whether it is volumes,
the network, the user IDs, and so on. It is therefore dangerous to remove those isolations as they are
the most important security system in the container. Those isolation allow the container to live in its
own environment, and removing the namespaces would allow the container to reach the host and vice
versa.

For instance, containers using many ports prefer not to bother with the port redirection between the
host and the container, and ask the user creating the container to bind the container directly on the
host’s network. This immediately allows a breakout, as the container could poison key elements of
the network such as ARP, and proceed to Man In The Middle (MitM) attacks. As a container has little
isolation and is essentially a group of processes, removing the isolation layer is as if a guest was allowed
to run a group of processes directly on the host.

Therefore, using options to remove the namespace isolation is generally a terrible idea. Options like
--network=host are extremely dangerous. Volumes, which are essential for the mount namespace
to work, are also considered risky, depending on what is exposed. No filesystem in its entirety or system
files should ever be exposed (/proc, /var/run, /dev and so on) as they may allow the container to
breakout. For instance /proc has files linked to the temperature controller of the kernel. A malicious
container could overheat the host, potentially damaging the hardware.

It is therefore a safe practice to avoid tweaking namespaces as much as possible :

• For any networking setting, avoid exposing the host’s network and redirect ports instead.
• If volumes are desired for a container, the containers’ data should be on a separate partition,

away from system files. For instance, storing container files in/media/dockerwheredocker
is a mount on the other partition would be an acceptable practice.

• Others namespaces (User IDs, Cgroups, and so on) should never be tweaked, except for extremely
precise reasons.

Luckily, most containers only tweak namespaces with volumes : it is therefore trivial to isolate the
container files from the host’s. If any networking options are exposing the host’s network, an inventory
of all ports used by the container must be done, then it is possible to remove the container from the
network by redirecting only the required ports from the inventory.
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6.4.3 CGroups

While CGroups does not allow a breakout in itself, an attacker could crash other processes by using all
the RAM at its disposal, or all the CPU, or storage space. Most containers are run without any cgroups
settings, which mean they have unlimited access to the host’s resources. Should one container fill the
host’s resources, containers may start crashing, stop responding or behave in unforeseen ways.

As of this writing, no container configurations were found even suggesting using a particular cgroups
profile. Furthermore, documentation about cgroups is sparse, and since many users are content with
the vendor’s default configuration, it is our belief that cgroups is an option that is rarely used. Although
this may not be the case in organizations with proper knowledge (such as multitenant infrastructures
like AWS or Microsoft Azure), many smaller organizations may be quick to overlook those settings.

Popular container tools such as Kubernetes or OpenShift do recommend using cgroups, but do not
enforce it. As stated before, as most users do use the default configuration, the cgroup settings may be
forgotten or ignored. Worse, the first version of cgroups has known vulnerabilities, which may be used
to break out of the container.

Our work focuses on escaping the premises of a container. As disregarding cgroups may lead to being
able to influence other containers, it is our belief that adding clear limitations on resource consumption
for each container is a good practice.

6.4.4 SecComp

Seccomp allows to filter system calls made by a certain process. Container engines do include a
SecComp profile for containers [104], but this option can be disabled by using --security-opt
seccomp=unconfined. This would in turn remove any limitation on system calls. While many

system calls would not be available due to the lack of capabilities in a container by default, this would
certainly diminish the overall security of the container.

As of this writing, no container configuration did propose an alternative seccomp profile, which suggests
the default is adequate for most uses. Customized seccomp files should be avoided as much as possible,
as the Linux Kernel is complex and allowing additional system calls may not be an adequate solution
in terms of security.

It is therefore advised not to add system calls to the seccomp profile, and rather whitelist only those
that are required. Publications have proposed different tools for system calls enumeration in order to
generate seccomp profiles automatically [31] [47] [44], which all show optimal results from a security
perspective. Other publications suggest that establishing a baseline to enhance anomalies in system
calls also proves to be effective [105].
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6.5 Long-termmitigation techniques

Long-term mitigation techniques are mitigations that are considered to take a significant amount of
time to apply them. This type of mitigation is not the exact opposite of common mitigations as they
are not especially rare or common, but are different in the time they take to be applied.

6.5.1 CVE-2022-0492 Carpediem

The CVE CVE-2022-0492 provides a good example of a long-term mitigation technique. This vulnerability
impacted one of the core security primitives of containers, cgroups. With this CVE, an attacker in a
container could call a file made by cgroups v1, which would in turn be run as root on the container
host. This CVE provided trivial escape of the container, but the mitigation was recommending cgroups
to be upgraded to v2. However, this upgrade required numerous changes on the container host [106],
which would have required stopping all container on the host, and in some cases changing the business
logic on software running in containers. This may require days or even weeks of work, with disruption
to the quality of service.

This CVE is a good example of long-term mitigation techniques : sometimes, the container in itself may
not be the only one responsible for the security issue. As soon as other components (such as the host)
are involved, it may take a lot of time to properly patch and address issues. In the meantime, security
incidents may still occur.

Many examples of security issues that cannot be mitigated quickly can be given. While this work does
not claim to offer a complete list, the following subchapters provide examples with potential solutions
of security issues with long-term mitigation consequences.

6.5.2 Container engines

Container engines can also be the target of CVEs. In cases where an exploit is found, an upgrade must
be done. In most cases, upgrading the container engine will disrupt all containers, as the software
running the containers itself will need to be updated and restarted. In the worst scenarios, the update
process does not offer proper backward compatibility, which may break containers. For instance,
should Docker remove the --network option, many containers would stop working. This is also
true for peripheral software such as Docker Compose or Podman Compose, created so that a whole
container infrastructure can be defined in a single file. If the update process forces the administrator to
upgrade to a newer container description format, there is no guarantee that all containers will behave
the same after the update.
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As keeping a flawed version of a container engine is certainly not a viable option, a user should generally
try to patch the host as quickly as possible, while still making sure not to introduce any other security
flaw. In some environments, this may take a significant amount of time, in particular with exotic options
applied to containers. In most cases, the time required to update from a flawed version to a patched
one should be insignificant, as long as updates are kept in order. In other cases, the time required may
be exponential, as breaking changes may occur, significantly increasing the time required to properly
update the whole container infrastructure.

For instance, CVE-2020-14298 [107] was letting an attacker to bypass security restrictions, effectively
accessing the container host. In those cases, if updates were not done properly, patching the CVE may
have proven difficult due to the many changes to the container engine. The update process to mitigate
CVE-2020-14298 required updating the runc executable, which meant updating the container engine
as well, and potentially the host. It is well-known that updates may disrupt running services, and
since this mitigation process involves at least two different services, emergency patching would have
seriously disrupted all services. Moreover, emergency patching may quickly introduce other problems,
including security gaps.

It is therefore recommended to ensure the container engines running all containers are kept up-to-date,
as well as the host’s kernel and other packages.

6.5.3 Network dependencies

Containers rely not only on the host’s hardware, but also on its network. For instance, incoming or
outgoing container traffic will require the host’s NIC, to properly route the data towards its destination,
regardless if the destination is another container or not. The settings of the NIC, as well as the network’s
settings for the host must be taken into account independently of the host’s configuration.

An example of dependency from the container to the host is the host’s NIC Maximum Transmission Unit
(MTU). As containers have their own network, they can specify any MTU in their network. However,
when switching to the host’s own NIC, the container engine must convert each data packet from the
container’s network MTU to the host’s MTU. Otherwise, packets will be dropped and connectivity will
not work properly. This may happen with protocols typically for datacenters, such as Virtual eXtensible
Local-Area Network (VXLAN) or GEneric NEtwork Virtualization Encapsulation (GENEVE) that use part
of each packet for network isolation across tenants.

Another dependency might be Virtual LANs (VLANs), as each VLAN will usually have its own role in the
network. For instance, the management network, which usually contains all administrative interfaces
usually found on servers, routers, switches, firewalls and other equipments. Should a container have
access to this VLAN, this might cause the network as a whole to be compromised, as management
interfaces are considered highly sensitive and not considered attack-resistant [108].
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While network dependencies may not represent much complexity at first, it will impact containers
significantly : network security issues may require thorough patches to be applied, and could cause
other security incidents. Service disruption may be the least significant factor of importance in those
cases : should the wrong VLAN be applied to the host’s NIC, this could cause important damages once
a container is compromised, as the container will have access to the aforementioned VLAN.

It is therefore recommended to create specific network zones (VLAN, VXLAN, etc.) for containers
(depending on the sensitivity), and consider this zone to be already compromised. Setting up zero
trust policies on this network zone by authorizing just enough privileges, ports and resources to the
network area, which will significantly slow down an attack. In multitenant or multiuser environments,
consider adding firewall and intrusion detection software to ensure foreign traffic is flagged, to detect
attacks early.

6.5.4 Hardware dependencies

Handling hardware with containers can prove to be complicated but may be required. For instance,
containers handling complex matrix computation or converting media files will require hardware
acceleration, for which a GPU will perform with optimal performance. However, exposing a hardware
device to a container does complexify the interactions between the host and the container. Exposing
hardware to a container is different than with a VM : in a VM, a device is fully allocated to the VM,
whereas many containers can share devices. This is because containers are simply a group of processes
and they share the host’s kernel. This means that if any exploit is possible using the exposed devices,
the host will be exposed as well.

Hardware dependencies are simple to fix, but only as an emergency measure. If containers do depend
on the device to work properly, simply removing it from the container may not be optimal in the long
term. Media conversion software will not be able to work as well without GPU at its disposal, and
performance will be degraded. In other cases, removing the exposed device is simply not possible, as
software may depend on hardware to check for a license or to simply function.

Furthermore, exposing devices to a container may not be sufficient for it to interact with the device, as
the process representing the container may not have the proper capability set to do so. In those cases,
the container administrator would have no choice but to add the capabilities to ensure the container is
working properly. However, this grants the container more permissions than what is recommended,
and lessens the isolation between the container and the host. A determined attacker may well be able
to break the separation between the two and get root access to the host.

There is little room for maneuver with hardware dependencies as host devices and peripherals simply
are exposed or not. In cases where a device needs to be exposed and the device is more than a Universal
Serial Bus (USB) device, consider creating a VM to group all containers depending on the device in
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one. In some cases, like CVE-2020-3962 [26], described in our State Of The Art, an attacker may still be
able to access the VM host, although VMs escapes are known to be rare. It is our recommendation to
privilege VMs over container for those use-cases.

6.6 Considerations for containers

Containers are a powerful tool as they allow proper isolation if ran correctly. As soon as exotic configu-
rations are considered, it is paramount to remember the thin layers of isolation in between the host
and its containers. To ensure that this isolation remains intact or effective, it is generally a good idea to
remain near the common configurations or the default ones.

As containers do tend to abstract many different aspects of system administration, such as networking,
security, and maintenance, it is important to remember that container engines are mostly tools made
to simplify the lives of their administrators, but that the many complexities are still present. Those
abstractions may lead to forgetting key differences between VM and containers, such as the weak level
of isolation between containers and the host. In the worst cases, it may lead users to directly run
containers regardless of the options passed at runtime, and strip restrictions as they go.

Therefore, the container maintainer must understand all options passed to it at its creation, as one
option can quickly render the container dangerous for the whole infrastructure. Mitigation guides
[100] [109] do exist, which provides optimal security for containers, and may be a good starting point
for container administrators to ensure a good level of isolation. In any case, any option the container
maintainer does not know about should be considered a risk and documented, understood and avoided
if possible.

Default configuration is also a security risk in itself, depending on who is providing said configuration.
For instance, the container publisher may have limited experience or knowledge about containers,
which may lead the publisher to provide at-risk configurations. In some cases, publishers have been
known to ask for wide permissions to be granted, to avoid long and complex manuals [110]. This is the
same with containers, as some publishers have been known to strip the isolation layer much more
than required. An example of such a container, downloaded more than 500 million times, is shown on
figure 6.1.

The abstraction of topics linked to containers coupled with an “App Store” for containers, such as
the Docker Hub, has tremendously simplified software developments, deploying new projects, and
software infrastructure. However, it has also created new security issues, such as the ones described
in this work. Nowadays, container users should not rely on the container or its default configuration
without proper understanding of what the container is working with, that is its capabilities, its volumes,
its networking, and so on.
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Figure 6.1: A popular container removing the much-needed layer of isolation between the host and
the container [111]

As container issues can lead to security ones, and may consequently lead to compromising the entire
host or cluster, containers, while disposable, are still to be considered as a process that can receive or
emit malicious traffic. While designing security for containers may take significant amounts of time,
patching containers for security issues once they are deployed may take much more time to patch
than to design [112]. While emergency patching is almost inevitable, a container administrator may
save time by checking containers for weaknesses before running them, by comparing the containers
with security guidelines and security tools suggested in this work.

Should all of the above solutions be inadequate, then it may be best to consider VMs instead of con-
tainers. Switching from containers to VMs is switching from one paradigm to another, but it drastically
reduces the chances of a breakout. When VMs are not possible, for example in Kubernetes or OpenShift
clusters, the use of Kata containers may be of use, as containers are replaced by VMs, ensuring an
optimal security layer between the VM and the host. Other solutions are available depending on the
requirements. It is important to denote that implementing a tool fitting security needs may slow down
the container [113], but would certainly cost less than having to patch security holes in an emergency.

In fact, more generally, there surely is a solution with containers that will fulfill each need. The most
important point is to ensure a consistent and optimal level of security to avoid breakouts, for example
by using VMs or by using containers with hardened configurations. As containers can be started in a
matter of seconds, scalability is most probably the biggest issue with this technology, as containers
are seen as disposable. More than 70% run for less than 5 minutes [9], and since 61% of organizations
run more than 250 containers at the same time, it is very hard to keep track of all containers. This also
explains why containers are targeted by attackers and why breakouts are favoured over many other
entry points : given the constant new containers ran, it is only a matter of time before one vulnerable
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container appears.

In our opinion, in view of the above, it is truly critical for any organization using containers to use
the security tools at their disposal, establish a well-established security policy as well as deployment
process, and retroactively review current containers. A real security risk is present and cannot be
ignored without considerable subsequent losses. As container technology is still very much on the up,
ignoring its security could lead to heavy losses for both operators and container users.
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7 Conclusion

Security is a primary concern for any organization, as a lack of it will certainly lead to damage to
both the organization and its users. Containers have proven useful to separate concerns, services and
entire departments without the overhead of Virtual Machines (VMs). Their usage have tremendously
increased in recent years, to the point that many programs only come pre-packaged for containers. The
main reason for their popularity is their simplicity, as one command can launch a full infrastructure in
a matter of seconds. As turnkey solutions are popular within organizations, this pushed containers to
the top of preferred technologies [42] within the developer community. However, the main downside
is that users are less aware of how containers work and their inherent risks. Good practices have not
been set universally, which may lead developers, administrators and other container users to disregard
or ignore security risks linked to containers, let alone their inner workings. Organizations such as the
National Institute of Standards and Technology (NIST) quickly underlined the importance of good
practices and the most frequent risks. Furthermore, containers are still gaining popularity, and so are
security tools, either created to harden containers or to break out of them.

While big organizations and Cloud Service Providers (CSPs) have quickly adopted an optimal security
posture, data suggest smaller organizations as well as environments for development or ones that are
at-risk such as Internet of Things (IoT) devices are, in many cases, left exposed.
This work proposes a tool to analyze containers and underline security risks linked to containers
from the inside. Our work explores the security aspects of containers and also studies their security
implications.

In our introduction chapter, we have asked four questions. We have answered the four as follows :

• Can containers be fully scanned to determine which attack is feasible ? We have established in
chapter 4 that, as long as a binary can be executed with some form of privilege, it is possible to
determine the container engine, the potential weaknesses of the container and the attacks that
could breakout of the container, all while inside of it. We have shown in chapter 5 that standard
configurations found on the web are sufficient to allow trivial attacks to pass, regardless of the
container tool used.

• What are the risks with the current use of containers ? We have proved in chapter 3, 4 and 5 that
containers are not secure due to their lack of isolation, and we have also proved that breakouts
can easily occur with few requirements. We have then showed in chapter 5 and 6 the risks of
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using containers carelessly or with little understanding of them, which could cause extensive
damage. We hence have proved that there are significant risks of using containers without a
proper understanding of them and how they run.

• What are the challenges in mitigating attacks with containers ? We have answered this question
in chapter 6 by analyzing the cost of mitigation after deployment, and highlighted the cost of
emergency patching in comparison to early precautions. We also have listed potential roadblocks
that could slow down mitigation of containers, and have suggested solutions for each of them.

• What can be done to avoid breakouts on containers ? We also have answered this question in
chapter 6, by underlining existing guidelines that would not only allow to minimize the risk of
breakouts. Both guidelines went a step further by ensuring that incursions cannot compromise
the infrastructure as a whole. We have also suggested using several tools to harden containers
as if they were VMs, for example by using Kata containers.

Changing any process is a tenuous task, as most humans quickly get accustomed to how they work.
Containers are no exception : from what was seen, an enormous challenge is ahead for many organiza-
tions. Changing the ways of working for all users, including junior employees, will surely represent a
challenge. However, administrators in charge of infrastructure may be able to impose certain guidelines,
the lines of which should follow well-established ones, such as NIST and so on.

Contrary to new technologies, there is enough material with containers to mitigate common and
uncommon attacks in a way that satisfies both the container maintainers and the security guidelines
of an organization. While it is true it is impossible to account for future attacks, most current attacks
can be thwarted with simple fixes.

Ensuring a container is secure is a known process as it is similar to traditional hardening methods,
such as VM. A machine, regardless if it is virtual that has excessive rights (such as exposed unused ports
or wide access to company resources) or not, can be patched efficiently so that the service has exactly
enough rights to function. As containers are groups of processes, they fall into the same category and
hence can be patched in the same way.

This work concludes that, without proper security mechanisms in place, whether it is at the organiza-
tional level with processes or at a technological level with a security baseline, containers will continue
to be vulnerable. As attackers have adopted automated scans, it is only a matter of time, if it is not
already the case, that attackers will adopt automated attack tools designed to break out of containers
and many times more powerful than our implementation.

Although the situation is critical, this kind of security hole is unfortunately common with new tech-
nologies. It is urgent to implement a policy aimed at hardening containers rather than keeping them
open, at the risk of an initial drop in productivity. This should be temporary, however, and gradually
be adopted by all, leading to a more secure container environment. Responsible container mainte-
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nance right from the service development stage will minimize the risks of intrusion and unauthorized
access.

7.1 Future works

The basis of our tool relies on its attack implementations. As containers have many interactions with
the container host, there are many attacks that can still be implemented to assess the security of
a container, from trivial ones to more complex ones, relying on the Central Processing Unit (CPU)
architecture, or more generally using a specific version of the container runtime. As containers are
getting very popular, many organizations and individuals are searching for vulnerabilities, either due
to misconfiguration or mistakes in the container engine. Those vulnerabilities could be included in our
work easily, as dependencies can be included in our tool’s binary and the context engine allows for
proper checks of the environment. Both can be extended at will, allowing new attacks to be added.
Furthermore, instead of developing our attacks, attacks found on community websites dedicated for
exploits and vulnerabilities, such as The Exploit Database would further allow our tool to have a wide
set of attacks.

As security organizations are also focusing on containers, ensuring that attacks can go as undetected
as possible would allow our tool to run even in high-security cases. The feasibility of such a feature
could be observed by checking if our tool is detected as an anomaly by security tools such as Falco.

We believe more and more automated attacks will occur, as attackers are quickly adapting to new
paradigms. It is also our belief that optimal security practices will continue to be pushed forward by
major technological investors like Microsoft, Amazon and Google as they depend on security infras-
tructures, as they depend on it. As new technologies for containers appear very frequently, it is very
probable new security procedures for containers will also become common with time, even in small
organizations, at the cost of some paying the toll for not implementing them properly.
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